YOLOv9改进|加入AKConv模块!


专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!!


一、改进点介绍

        AKConv是一种具有任意数量的参数和任意采样形状的可变卷积核,对不规则特征有更好的提取效果。

论文速览::AKConv是2023年11月发表的一种可变卷积核,赋予卷积核任意数量的参数和任意采样形状,以解决具有固定样本形状和正方形的卷积核不能很好地适应不断变化的目标的问题点可以为网络开销和性能之间的权衡提供更丰富的选择。 AKConv的核心思想在于它为卷积核提供了任意数量的参数和任意采样形状,能够使用任意数量的参数(如1,2,3,4,5,6,7等)来提取姝征,这在标准卷积和可变形卷积Q中并未实现。AKConv能够根据硬件环境,使卷积参数的数星呈线性增减((非常适用于轻量化模型)。

适用检测目标:   通用改进


二、AKConv模块详解

        论文地址:   https://arxiv.org/abs/2311.11587

        代码地址:   https://github.com/CV-ZhangXin/AKConv/tree/main

 2.1 模块简介

        AKConv的主要思想:   使用可变形状和大小的卷积核提升模型的特征提取能力。

        AKConv的主要创新点:   1.对于不同大小的卷积核,作者提出了一种算法来生成任意大小卷积核的初始采样坐标。2.为了适应目标的不同变化,作者通过获得的偏移量来调整不规则卷积核的采样位置。3.与常规卷积核相比,所提出的AKConv实现了不规则卷积核提取特征的功能,为各种不同的目标提供了任意采样形状和大小的卷积核,弥补了常规卷积的不足。

 点评: 简单点说,作者通过一定的方法做出了一种任意形状的卷积核,对不规则特征具有很强的提取能力,感兴趣的同学可以去阅读源码!

AKConv模块的原理图


三、AKConv模块使用教程

3.1 AKConv模块的代码

class AKConv(nn.Module):
    def __init__(self, inc, outc, num_param=5, stride=1, bias=None):
        """
        初始化参数说明:
            inc: 输入通道数, outc: 输出通道数, num_param:(卷积核)参数量, stride = 1:卷积步长默认为1, bias = None:默认无偏执
            """
        super(AKConv, self).__init__()
        self.num_param = num_param
        self.stride = stride
        self.conv = Conv(inc, outc, k=(num_param, 1), s=(num_param, 1), b=bias)
        self.p_conv = nn.Conv2d(inc, 2 * num_param, kernel_size=3, padding=1, stride=stride)
        nn.init.constant_(self.p_conv.weight, 0)
        self.p_conv.register_full_backward_hook(self._set_lr)

    @staticmethod
    def _set_lr(module, grad_input, grad_output):
        grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))
        grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))

    def forward(self, x):
        # N is num_param.
        offset = self.p_conv(x)
        dtype = offset.data.type()
        N = offset.size(1) // 2
        # (b, 2N, h, w)
        p = self._get_p(offset, dtype)

        # (b, h, w, 2N)
        p = p.contiguous().permute(0, 2, 3, 1)
        q_lt = p.detach().floor()
        q_rb = q_lt + 1

        q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2) - 1), torch.clamp(q_lt[..., N:], 0, x.size(3) - 1)],
                         dim=-1).long()
        q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2) - 1), torch.clamp(q_rb[..., N:], 0, x.size(3) - 1)],
                         dim=-1).long()
        q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)
        q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)

        # clip p
        p = torch.cat([torch.clamp(p[..., :N], 0, x.size(2) - 1), torch.clamp(p[..., N:], 0, x.size(3) - 1)], dim=-1)

        # bilinear kernel (b, h, w, N)
        g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))
        g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))
        g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))
        g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))

        # resampling the features based on the modified coordinates.
        x_q_lt = self._get_x_q(x, q_lt, N)
        x_q_rb = self._get_x_q(x, q_rb, N)
        x_q_lb = self._get_x_q(x, q_lb, N)
        x_q_rt = self._get_x_q(x, q_rt, N)

        # bilinear
        x_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \
                   g_rb.unsqueeze(dim=1) * x_q_rb + \
                   g_lb.unsqueeze(dim=1) * x_q_lb + \
                   g_rt.unsqueeze(dim=1) * x_q_rt

        x_offset = self._reshape_x_offset(x_offset, self.num_param)
        out = self.conv(x_offset)

        return out

    # generating the inital sampled shapes for the AKConv with different sizes.
    def _get_p_n(self, N, dtype):
        base_int = round(math.sqrt(self.num_param))
        row_number = self.num_param // base_int
        mod_number = self.num_param % base_int
        p_n_x, p_n_y = torch.meshgrid(
            torch.arange(0, row_number),
            torch.arange(0, base_int), indexing='xy')
        p_n_x = torch.flatten(p_n_x)
        p_n_y = torch.flatten(p_n_y)
        if mod_number > 0:
            mod_p_n_x, mod_p_n_y = torch.meshgrid(
                torch.arange(row_number, row_number + 1),
                torch.arange(0, mod_number), indexing='xy')

            mod_p_n_x = torch.flatten(mod_p_n_x)
            mod_p_n_y = torch.flatten(mod_p_n_y)
            p_n_x, p_n_y = torch.cat((p_n_x, mod_p_n_x)), torch.cat((p_n_y, mod_p_n_y))
        p_n = torch.cat([p_n_x, p_n_y], 0)
        p_n = p_n.view(1, 2 * N, 1, 1).type(dtype)
        return p_n

    # no zero-padding
    def _get_p_0(self, h, w, N, dtype):
        p_0_x, p_0_y = torch.meshgrid(
            torch.arange(0, h * self.stride, self.stride),
            torch.arange(0, w * self.stride, self.stride), indexing='xy')

        p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)
        p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)
        p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)

        return p_0

    def _get_p(self, offset, dtype):
        N, h, w = offset.size(1) // 2, offset.size(2), offset.size(3)

        # (1, 2N, 1, 1)
        p_n = self._get_p_n(N, dtype)
        # (1, 2N, h, w)
        p_0 = self._get_p_0(h, w, N, dtype)
        p = p_0 + p_n + offset
        return p

    def _get_x_q(self, x, q, N):
        b, h, w, _ = q.size()
        padded_w = x.size(3)
        c = x.size(1)
        # (b, c, h*w)
        x = x.contiguous().view(b, c, -1)

        # (b, h, w, N)
        index = q[..., :N] * padded_w + q[..., N:]  # offset_x*w + offset_y
        # (b, c, h*w*N)
        index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)

        x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)

        return x_offset

    #  Stacking resampled features in the row direction.
    @staticmethod
    def _reshape_x_offset(x_offset, num_param):
        b, c, h, w, n = x_offset.size()
        x_offset = rearrange(x_offset, 'b c h w n -> b c (h n) w')
        return x_offset

3.2 在YOlO v9中的添加教程

阅读YOLOv9添加模块教程或使用下文操作

YOLOv9添加模块教程

        1. 将YOLOv9工程中modelscommon.py文件中代码增加下文中的代码。

from einops import rearrange


class AKConv(nn.Module):
    def __init__(self, inc, outc, num_param=5, stride=1):
        """
        初始化参数说明:
            inc: 输入通道数, outc: 输出通道数, num_param:(卷积核)参数量, stride = 1:卷积步长默认为1, bias = None:默认无偏执
            """
        super(AKConv, self).__init__()
        self.num_param = num_param
        self.stride = stride
        self.conv = Conv(inc, outc, k=(num_param, 1), s=(num_param, 1) )
        self.p_conv = nn.Conv2d(inc, 2 * num_param, kernel_size=3, padding=1, stride=stride)
        nn.init.constant_(self.p_conv.weight, 0)
        self.p_conv.register_full_backward_hook(self._set_lr)

    @staticmethod
    def _set_lr(module, grad_input, grad_output):
        grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))
        grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))

    def forward(self, x):
        # N is num_param.
        offset = self.p_conv(x)
        dtype = offset.data.type()
        N = offset.size(1) // 2
        # (b, 2N, h, w)
        p = self._get_p(offset, dtype)

        # (b, h, w, 2N)
        p = p.contiguous().permute(0, 2, 3, 1)
        q_lt = p.detach().floor()
        q_rb = q_lt + 1

        q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2) - 1), torch.clamp(q_lt[..., N:], 0, x.size(3) - 1)],
                         dim=-1).long()
        q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2) - 1), torch.clamp(q_rb[..., N:], 0, x.size(3) - 1)],
                         dim=-1).long()
        q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)
        q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)

        # clip p
        p = torch.cat([torch.clamp(p[..., :N], 0, x.size(2) - 1), torch.clamp(p[..., N:], 0, x.size(3) - 1)], dim=-1)

        # bilinear kernel (b, h, w, N)
        g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))
        g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))
        g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))
        g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))

        # resampling the features based on the modified coordinates.
        x_q_lt = self._get_x_q(x, q_lt, N)
        x_q_rb = self._get_x_q(x, q_rb, N)
        x_q_lb = self._get_x_q(x, q_lb, N)
        x_q_rt = self._get_x_q(x, q_rt, N)

        # bilinear
        x_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \
                   g_rb.unsqueeze(dim=1) * x_q_rb + \
                   g_lb.unsqueeze(dim=1) * x_q_lb + \
                   g_rt.unsqueeze(dim=1) * x_q_rt

        x_offset = self._reshape_x_offset(x_offset, self.num_param)
        out = self.conv(x_offset)

        return out

    # generating the inital sampled shapes for the AKConv with different sizes.
    def _get_p_n(self, N, dtype):
        base_int = round(math.sqrt(self.num_param))
        row_number = self.num_param // base_int
        mod_number = self.num_param % base_int
        p_n_x, p_n_y = torch.meshgrid(
            torch.arange(0, row_number),
            torch.arange(0, base_int), indexing='xy')
        p_n_x = torch.flatten(p_n_x)
        p_n_y = torch.flatten(p_n_y)
        if mod_number > 0:
            mod_p_n_x, mod_p_n_y = torch.meshgrid(
                torch.arange(row_number, row_number + 1),
                torch.arange(0, mod_number), indexing='xy')

            mod_p_n_x = torch.flatten(mod_p_n_x)
            mod_p_n_y = torch.flatten(mod_p_n_y)
            p_n_x, p_n_y = torch.cat((p_n_x, mod_p_n_x)), torch.cat((p_n_y, mod_p_n_y))
        p_n = torch.cat([p_n_x, p_n_y], 0)
        p_n = p_n.view(1, 2 * N, 1, 1).type(dtype)
        return p_n

    # no zero-padding
    def _get_p_0(self, h, w, N, dtype):
        p_0_x, p_0_y = torch.meshgrid(
            torch.arange(0, h * self.stride, self.stride),
            torch.arange(0, w * self.stride, self.stride), indexing='xy')

        p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)
        p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)
        p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)

        return p_0

    def _get_p(self, offset, dtype):
        N, h, w = offset.size(1) // 2, offset.size(2), offset.size(3)

        # (1, 2N, 1, 1)
        p_n = self._get_p_n(N, dtype)
        # (1, 2N, h, w)
        p_0 = self._get_p_0(h, w, N, dtype)
        p = p_0 + p_n + offset
        return p

    def _get_x_q(self, x, q, N):
        b, h, w, _ = q.size()
        padded_w = x.size(3)
        c = x.size(1)
        # (b, c, h*w)
        x = x.contiguous().view(b, c, -1)

        # (b, h, w, N)
        index = q[..., :N] * padded_w + q[..., N:]  # offset_x*w + offset_y
        # (b, c, h*w*N)
        index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)

        x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)

        return x_offset

    #  Stacking resampled features in the row direction.
    @staticmethod
    def _reshape_x_offset(x_offset, num_param):
        b, c, h, w, n = x_offset.size()
        x_offset = rearrange(x_offset, 'b c h w n -> b c (h n) w')
        return x_offset

         2. 将YOLOv9工程中modelsyolo.py文件中700行(可能因为版本改变,新建一个elif分支即可)左右的位置加入下方代码代码。

        elif m in (AKConv,):
            c1 = ch[f]
            args.insert(0, c1)


3.3 运行配置文件

# YOLOv9
# Powered bu https://blog.csdn.net/StopAndGoyyy
# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],  
   
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3

   # avg-conv down
   [-1, 1, ADown, [256]],  # 4-P3/8

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5

   # avg-conv down
   [-1, 1, ADown, [512]],  # 6-P4/16

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7

   # avg-conv down
   [-1, 1, ADown, [512]],  # 8-P5/32

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9
  ]

# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 10

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)

   # avg-conv-down merge
   [-1, 1, ADown, [256]],
   [[-1, 13], 1, Concat, [1]],  # cat head P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)

   # avg-conv-down merge
   [-1, 1, ADown, [512]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)
   
   
   # multi-level reversible auxiliary branch
   
   # routing
   [5, 1, CBLinear, [[256]]], # 23
   [7, 1, CBLinear, [[256, 512]]], # 24
   [9, 1, CBLinear, [[256, 512, 512]]], # 25
   
   # conv down
   [0, 1, Conv, [64, 3, 2]],  # 26-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 27-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28

   # avg-conv down fuse
   [-1, 1, ADown, [256]],  # 29-P3/8
   [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 32-P4/16
   [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 35-P5/32
   [[25, -1], 1, CBFuse, [[2]]], # 36

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37
   [-1, 1, AKConv, [512]],  # 38

   
   
   # detection head

   # detect
   [[31, 34, 38, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]

3.4 训练过程


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/421254.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

44岁香港乐队主唱无惧身份悬殊娶「十亿千金」,乐队因欠沟通解散

「豪门驸马」这个头衔听起来似乎是「人生赢家」,可其中无非就是想内涵女强男弱,靠老婆之类的意思,所以大部分男艺人都很排斥。 香港知名乐队Mr. 的主唱布志纶(Alan) 自从2014年娶了「玩具大王」千金陈雪莹后,也被外界封为「十亿驸…

H12-821_98

98.如图所示的广播网络中,OSPF运行在四台路由器上,且在同一区域和同一网段。OSPF会自动选举一个DR和一个BDR,其余的两台路由器会成为DRother,从而达到更好的备份效果。 A.对 B.错 答案:A 注释: 这道题需要注意的是,在…

Jupyter Notebook的安装和使用(windows环境)

一、jupyter notebook 安装 前提条件:安装python环境 安装python环境步骤: 1.下载官方python解释器 2.安装python 3.命令行窗口敲击命令pip install jupyter 4.安装jupyter之后,直接启动命令jupyter notebook,在默认浏览器中打开jupyte…

vulhub中Aapache Tomcat AJP 文件包含漏洞复现(CVE-2020-1938)

查看tomcat默认页面,此时通过AJP协议的8009端口亦可访问Tomcat。 利用如下工具均可测试漏洞: https://github.com/YDHCUI/CNVD-2020-10487-Tomcat-Ajp-lfi 工具需要用到python2, 如果需要进一步利用需要向服务器的/webapps/ROOT目录下上传…

续上一篇---Jetson Xavier NX 开发板Yolov4 环境搭建和摄像头实时检测教程

1.已成功安装完CUDA,OpenCV,cuDNN,配置如下: 2.下载yolov4 自行去GitHub下载,然后再导入NX中,这样比较快且不容易出错。 https://github.com/AlexeyAB/darknet.git 3.配置 下载好包后解压缩,进…

性能优化篇(四) GPU Instancing

使用GPU Instancing可以在一个Draw Call中同时渲染多个相同或类似的物体,从而减少CPU和GPU的开销。 官方文档:https://docs.unity3d.com/Manual/GPUInstancing.html 启用GPU Instancing,我们可以选中一个材质,然后在Inspector窗口…

云天励飞战略投资神州云海,布局机器人市场

日前,AI上市企业云天励飞(688343.SH)完成了对深圳市神州云海智能科技有限公司(以下简称“神州云海”)的B轮战略投资。 公开资料显示,自2015年于深圳创立以来,神州云海始终聚焦人工智能与服务机器人广阔的应用市场,依托自主的核心算法能力,深耕机器人硬件本体研发,整合上下游产…

Java 学习和实践笔记(26):组合(component)的含义以及与继承(extends)的关系

组合的两个作用: 1)通过将父类对象作为子类的属性 2)通过第1点的作用,实现了代码复用。 示例代码: public class TestComponent {public static void main(String[] args) {Student2 s1 new Student2("jason&…

Zookeeper4:Java客户端、应用场景以及实现、第三方客户端curator工具包

文章目录 Java连接Zookeeper服务端依赖代码使用 应用场景统一命名服务统一配置管理统一集群管理服务器节点动态上下线理解实现模拟服务提供者【客户端代码】-注册服务模拟服务消费者【客户端代码】-获取服务信息进行请求消费 软负载均衡分布式锁理解实现 生产集群安装N台机器合…

【CV论文精读】【语义分割】【FCN】Fully Convolutional Networks for Semantic Segmentation

FCN–Fully Convolutional Networks for Semantic Segmentation 用于语义分割的全卷积网络 建议参考这篇博客阅读论文 FCN网络解析 0.论文摘要和作者信息 摘要 卷积网络是强大的可视化模型,可以产生特征层次。我们表明,卷积网络本身,经过端…

springboot220基于SpringBoot+Vue的周边游平台个人管理模块的设计与实现

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计,课程设计参考与学习用途。仅供学习参考。 不得用于商业或者非法用途,否则,一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项目编号&…

nginx-1.24编译安装

1.创建压缩包存放路径 [rootlocalhost /]# mkdir -p /apps/scripts [rootlocalhost /]# cd apps/scripts/2.上传所需文件 3.初始化环境 [rootlocalhost scripts]# yum install -y yum-utils device-mapper-persistent-data lvm2 wget net-tools nfs-utils lrzsz gcc gcc-c …

Softmax 回归 + 损失函数 + 图片分类数据集【动手学深度学习v2】李沐动手学深度学习课程笔记

目录 Softmax回归 损失函数 图片分类数据集 Softmax回归从零开始实现 Softmax回归简洁实现 Softmax回归 回归和分类的区别 回归问题举例上节课的预测房价问题,分类问题就是对样本进行分类 回归和分类的具体区别 假设真实的类别为第i个类别(值为1&#x…

springcloud项目,无法在Sentinel Dashboard查看到服务的访问监控信息【解决方法】

1.问题场景 因为warehouse子项目的前端未开发,所以只能通过postman测试接口访问; 2.解决方法 package org.sharetek.common.security.config;import cn.dev33.satoken.SaManager; import cn.dev33.satoken.filter.SaServletFilter; import cn.dev33.sat…

ESP32 web 对接华为云平台--MQTT协议

文章目录 前言一、MQTT协议二、如何使用MQTT协议对接华为云1.注册华为云账号2.设备接入中创建资源空间3.如何连接4.通过MQTT.fx工具做初步对接4.1 设置连接信息4.2 连接平台 5.查看平台设备信息 三. 设备测对接平台1.ESP测引入MQTT库2.编码2.1前端编码修改2.2 后端接口修改 3.M…

如何解决iQOO手机运行uniapp真机调试时无法识别的问题

打开开发者选项,打开USB设置,把默认USB选项改成MIDI模式,就可以检测到手机了

界面控件DevExpress .NET MAUI v23.2新版亮点 - 拥有全新的彩色主题

DevExpress拥有.NET开发需要的所有平台控件,包含600多个UI控件、报表平台、DevExpress Dashboard eXpressApp 框架、适用于 Visual Studio的CodeRush等一系列辅助工具。屡获大奖的软件开发平台DevExpress 今年第一个重要版本v23.1正式发布,该版本拥有众多…

Vue.js的双向绑定原理

Vue的双向绑定 vue双向绑定是其最重要的核心亮点,其原理也很简单,这里做个简单总结 vue2的双向绑定是利用的Object.definePropertyvue3的双向绑定是利用的 ES6Porxy中的defineProperty(target, propKey, propDesc 其作用类似于Object.defineProperty …

测试用例术语5.0

一、软件测试中术语 1.动态测试(dynamic testing):通过运行软件的组件或 系统来测试软件 例如:一辆汽车发动并行使测试 2.静态测试(static testing):对组件的规格说明书进行 评审&#xff0c…

超级充电测试负载的核心功能?

超级充电测试负载的核心功能主要包括以下几点: 模拟真实充电场景:超级充电测试负载能够模拟真实的电动汽车充电过程,包括充电设备的启动、停止、故障等状态,以及电动汽车的充电需求变化。通过这种方式,可以对充电设备和…