Hive SQL 开发指南(二)使用(DDL、DML,DQL)

在大数据领域,Hive SQL 是一种常用的查询语言,用于在 Hadoop上进行数据分析和处理。为了确保代码的可读性、维护性和性能,制定一套规范化的 Hive SQL 开发规范至关重要。本文将介绍 Hive SQL 的基础知识,并提供一些规范化的开发指南,帮助您高效地编写 Hive SQL 查询。

本系列分为

Hive SQL 开发指南(一)数据类型及函数

Hive SQL 开发指南(二)使用(DDL、DML,DQL)

Hive SQL 开发指南(三)优化及常见异常


一、数据定义命令(DDL)

建表

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name

  [(col_name data_type [COMMENT col_comment], ...)]

  [COMMENT table_comment]

  [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]

  [CLUSTERED BY (col_name, col_name, ...)

  [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]

  [ROW FORMAT row_format]

  [STORED AS file_format]

  [LOCATION hdfs_path]

 注意事项

  1. CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXIST 选项来忽略这个异常
  2. EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION)
  3. LIKE 允许用户复制现有的表结构,但是不复制数据
  4. COMMENT可以为表与字段增加描述
  5. ROW FORMAT

    DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char]

        [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]

   | SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]

         用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive 通过 SerDe 确定表的具体的列的数据。

        6.STORED AS

            SEQUENCEFILE

            | TEXTFILE

            | RCFILE    

            | INPUTFORMAT input_format_classname OUTPUTFORMAT             output_format_classname

       如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCE 。

使用示例

创建简单表:

CREATE TABLE pokes (foo INT, bar STRING);

创建外部表:

CREATE EXTERNAL TABLE page_view(viewTime INT, userid BIGINT,

     page_url STRING, referrer_url STRING,

     ip STRING COMMENT 'IP Address of the User',

     country STRING COMMENT 'country of origination')

 COMMENT 'This is the staging page view table'

 ROW FORMAT DELIMITED FIELDS TERMINATED BY '\054'

 STORED AS TEXTFILE

 LOCATION '<hdfs_location>';

建分区表 

CREATE TABLE par_table(viewTime INT, userid BIGINT,

     page_url STRING, referrer_url STRING,

     ip STRING COMMENT 'IP Address of the User')

 COMMENT 'This is the page view table'

 PARTITIONED BY(date STRING, pos STRING)

ROW FORMAT DELIMITED ‘\t’

   FIELDS TERMINATED BY '\n'

STORED AS SEQUENCEFILE;

建Bucket表 

CREATE TABLE par_table(viewTime INT, userid BIGINT,

     page_url STRING, referrer_url STRING,

     ip STRING COMMENT 'IP Address of the User')

 COMMENT 'This is the page view table'

 PARTITIONED BY(date STRING, pos STRING)

 CLUSTERED BY(userid) SORTED BY(viewTime) INTO 32 BUCKETS

 ROW FORMAT DELIMITED ‘\t’

   FIELDS TERMINATED BY '\n'

STORED AS SEQUENCEFILE;

创建表并创建索引字段ds

CREATE TABLE invites (foo INT, bar STRING) PARTITIONED BY (ds STRING);

复制一个空表

CREATE TABLE empty_key_value_store

LIKE key_value_store;

修改表结构

增加分区、删除分区

增加

alter table 表名 add if not exists partition(dt='2024-02-12');
alter table table1 add if not exists partition(dt='2024-02-12') location '/dws/table1/dt=2024-02-12';

删除

alter table 表名 drop if exists partition(dt='2024-03-06');

重命名表

ALTER TABLE table_name RENAME TO new_table_name

 修改列的名字、类型、位置、注释

ALTER TABLE table_name CHANGE [COLUMN] col_old_name col_new_name column_type [COMMENT col_comment] [FIRST|AFTER column_name]

 增加/更新列

ALTER TABLE table_name ADD|REPLACE COLUMNS (col_name data_type [COMMENT col_comment], ...)  

 增加表的元数据信息

ALTER TABLE table_name SET TBLPROPERTIES table_properties table_properties:

         :[property_name = property_value…..]

删表

DROP TABLE [IF EXISTS] table_name

二、 数据操作命令(DML)

LOAD DATA

语法规则

LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]

 使用说明

  1. LOAD DATA命令主要用于装载已有文件到新的TABLE中,只是拷贝或搬移文件,并不做内容的校验。
  2. 语法规则中,LOCAL表示从本地文件系统LOAD文件,否则就是从HDFS中取文件,OVERWRITE表示覆盖已有的数据。

使用示例

LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE pokes;

INSERT

基本模式

INSERT OVERWRITE TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) select_statement FROM from_statement

 插入模式

FROM from_statement

INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1

[INSERT OVERWRITE TABLE tablename2 [PARTITION ...] select_statement2] ...

 将查询结果写入HDFS文件系统

INSERT OVERWRITE [LOCAL] DIRECTORY directory1 SELECT ... FROM ...

        FROM from_statement

        INSERT OVERWRITE [LOCAL] DIRECTORY directory1 select_statement1

     [INSERT OVERWRITE [LOCAL] DIRECTORY directory2 select_statement2]

 INSERT INTO

INSERT INTO  TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 FROM from_statement

 使用示例

将查询数据输出至目录:

INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out' SELECT a.* FROM invites a WHERE a.ds='<DATE>';

将查询结果输出至本地目录:

INSERT OVERWRITE LOCAL DIRECTORY '/tmp/local_out' SELECT a.* FROM pokes a;

选择所有列到本地目录 :

hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a;

hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a WHERE a.key < 100;

hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/reg_3' SELECT a.* FROM events a;

hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_4' select a.invites, a.pokes FROM profiles a;

hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT COUNT(1) FROM invites a WHERE a.ds='<DATE>';

hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT a.foo, a.bar FROM invites a;

hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/sum' SELECT SUM(a.pc) FROM pc1 a;

将一个表的统计结果插入另一个表中:

hive> FROM invites a INSERT OVERWRITE TABLE events SELECT a.bar, count(1) WHERE a.foo > 0 GROUP BY a.bar;

hive> INSERT OVERWRITE TABLE events SELECT a.bar, count(1) FROM invites a WHERE a.foo > 0 GROUP BY a.bar;

JOIN

hive> FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar) INSERT OVERWRITE TABLE events SELECT t1.bar, t1.foo, t2.foo;

将多表数据插入到同一表中:

FROM src

INSERT OVERWRITE TABLE dest1 SELECT src.* WHERE src.key < 100

INSERT OVERWRITE TABLE dest2 SELECT src.key, src.value WHERE src.key >= 100 and src.key < 200

INSERT OVERWRITE TABLE dest3 PARTITION(ds='2008-04-08', hr='12') SELECT src.key WHERE src.key >= 200 and src.key < 300

INSERT OVERWRITE LOCAL DIRECTORY '/tmp/dest4.out' SELECT src.value WHERE src.key >= 300;

将文件流直接插入文件:

hive> FROM invites a INSERT OVERWRITE TABLE events SELECT TRANSFORM(a.foo, a.bar) AS (oof, rab) USING '/bin/cat' WHERE a.ds > '2008-08-09';

三、数据查询DQL

SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list [HAVING condition]]
[   CLUSTER BY col_list
  | [DISTRIBUTE BY col_list] [SORT BY| ORDER BY col_list]
]
[LIMIT number]

 使用说明

1)使用ALL和DISTINCT选项区分对重复记录的处理。默认是ALL,表示查询所有记录。DISTINCT表示去掉重复的记录
2)Where 条件类似我们传统SQL的where 条件,目前支持 AND,OR ,0.9版本支持between,IN, NOT IN,不支持EXIST ,NOT EXIST
3)ORDER BY与SORT BY的不同
ORDER BY 全局排序,只有一个Reduce任务
SORT BY 只在本机做排序
4)Limit
Limit 可以限制查询的记录数
例如:SELECT * FROM t1 LIMIT 5
实现Top k 查询,下面的查询语句查询销售记录最大的 5 个销售代表。
例如:
SET mapred.reduce.tasks = 1 
    SELECT * FROM test SORT BY amount DESC LIMIT 5
5)REGEX Column Specification
SELECT 语句可以使用正则表达式做列选择,下面的语句查询除了 ds 和 hr 之外的所有列:
SELECT `(ds|hr)?+.+` FROM test

基于Partition的查询

 使用说明

1)一般 SELECT 查询会扫描整个表,使用 PARTITIONED BY 子句建表,查询就可以利用分区剪枝(input pruning)的特性
2)Hive 当前的实现是,只有分区断言出现在离 FROM 子句最近的那个WHERE 子句中,才会启用分区剪枝

 JOIN

语法规则

join_table: 
   table_reference JOIN table_factor [join_condition] 
  | table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition 
  | table_reference LEFT SEMI JOIN table_reference join_condition 

table_reference: 
    table_factor 
  | join_table 

table_factor: 
    tbl_name [alias] 
  | table_subquery alias 
  | ( table_references ) 

join_condition: 
    ON equality_expression ( AND equality_expression )* 

equality_expression: 
    expression = expression

使用说明

1)Hive 只支持等值连接(equality joins)、外连接(outer joins)和(left semi joins)。Hive 不支持所有非等值的连接,因为非等值连接非常难转化到 map/reduce 任务
2)LEFT,RIGHT和FULL OUTER关键字用于处理join中空记录的情况
3)LEFT SEMI JOIN 是 IN/EXISTS 子查询的一种更高效的实现
4)join 时,每次 map/reduce 任务的逻辑是这样的:reducer 会缓存 join 序列中除了最后一个表的所有表的记录,再通过最后一个表将结果序列化到文件系统
5)实践中,应该把最大的那个表写在最后
6)join 查询时,需要注意几个关键点
6.1) 只支持等值join

SELECT a.* FROM a JOIN b ON (a.id = b.id)
SELECT a.* FROM a JOIN b ON (a.id = b.id AND a.department = b.department)

6.2) 可以 join 多于 2 个表,例如

SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)

6.3) 如果join中多个表的 join key 是同一个,则 join 会被转化为单个 map/reduce 任务
7)LEFT,RIGHT和FULL OUTER
例子

SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key)

7.1) 如果你想限制 join 的输出,应该在 WHERE 子句中写过滤条件——或是在 join 子句中写
7.2) 容易混淆的问题是表分区的情况
SELECT c.val, d.val FROM c LEFT OUTER JOIN d ON (c.key=d.key) WHERE a.ds='2010-07-07' AND b.ds='2010-07-07‘
如果 d 表中找不到对应 c 表的记录,d 表的所有列都会列出 NULL,包括 ds 列。也就是说,join 会过滤 d 表中不能找到匹配 c 表 join key 的所有记录。这样的话,LEFT OUTER 就使得查询结果与 WHERE 子句无关
解决办法

SELECT c.val, d.val FROM c LEFT OUTER JOIN d ON (c.key=d.key AND d.ds='2009-07-07' AND c.ds='2009-07-07')

8)LEFT SEMI JOIN
LEFT SEMI JOIN 的限制是, JOIN 子句中右边的表只能在 ON 子句中设置过滤条件,在 WHERE 子句、SELECT 子句或其他地方过滤都不行

SELECT a.key, a.value 
  FROM a 
  WHERE a.key in 
   (SELECT b.key 
    FROM B);
       可以被重写为:
      SELECT a.key, a.val 
   FROM a LEFT SEMI JOIN b on (a.key = b.key)

9)UNION ALL
用来合并多个select的查询结果,需要保证select中字段须一致
select_statement UNION ALL select_statement UNION ALL select_statement ...

四、HIVE SQL使用注意事项

HIVE不支持非等值连接

-- SQL中对两表内联可以写成:
select * from dual a,dual b where a.key = b.key;
-- Hive中应为
select * from dual a join dual b on a.key = b.key; 
-- 而不是传统的格式:
SELECT t1.a1 as c1, t2.b1 as c2FROM t1, t2 WHERE t1.a2 = t2.b2

分号字符

 分号是SQL语句结束标记,在HiveQL中也是,但是在HiveQL中,对分号的识别没有那么智慧,例如:
select concat(key,concat(';',key)) from dual;
但HiveQL在解析语句时提示:
        FAILED: Parse Error: line 0:-1 mismatched input '<EOF>' expecting ) in function specification
解决的办法是,使用分号的八进制的ASCII码进行转义,那么上述语句应写成:
select concat(key,concat('\073',key)) from dual;

IS [NOT] NULL 

 SQL中null代表空值, 值得警惕的是, 在HiveQL中String类型的字段若是空(empty)字符串, 即长度为0, 那么对它进行IS NULL的判断结果是False

Hive支持动态设置环境变量

例如,当启动一个执行环境后,可以调用如下命令:

set mapred.job.queue.nam=queue01;

Hive环境默认是default数据库,需用use切换数据库

例如,当启动一个执行环境后,可以调用如下命令:

use test_databases;

查询注意事项

inner join中的join key可以作为过滤条件,过滤条件放置位置必须规范,where条件放置过滤条件,on条件放置等值条件,例如下面语句

select * from test a join test b on a.id=b.id and a.id=3;

select * from test a join test b on a.id=b.id where a.id=3;

select * from test a join test b where a.id=b.id and a.id=3;

这三个语句执行结果一致,且执行计划一致(因为Hive内部帮我们优化了执行计划),但我们还是应该规范写法,按照语句二写SQL

left/right outer join

left/right outer join类的join key不能作为驱动表的过滤条件,要实现过滤的话可以通过on + where组合
select * from test a left join test b on a.id=b.id and a.id=3;

select * from test a left join test b on a.id=b.id where a.id=3;

其中第一个语句中没有把条件放入过滤中,而是直接作为join key值,而语句二放入where中,针对这种情况我们需要特殊情况特殊处理,特别针对partition的时候,如果希望过滤某批数据,应放到where后面处理

hive mapjoin查询注意

1.有一个极小的表<1000行
2.需要做不等值join的where操作(a.x < b.y 或者 a.x like b.y等,注:目前版本join下不支持不等值操作,不等值需加到where条件里)
3.默认情况下,hive会优化join,自动转换为mapjoin,但是某些情况下,mapjoin执行会失败,主要是由于hive依靠文件大小判断是否进入mapjoin,然后由于文件行数过大,导致map过程中出现OOM而失败,比如下面语句:

SELECT T.BD_ID          AS BD_ID
      ,T.BD_NAME        AS BD_NAME
      ,T.ITEM_CODE      AS ITEM_CODE
      ,T.ITEM_DESC      AS ITEM_DESC
      ,T.VENDOR_CODE    AS VENDOR_CODE
      ,T.VENDOR_NAME    AS VENDOR_NAME
      ,48 AS DATASOURCE_NUM_ID
  FROM GKEI.G_SRM_PRICE_ORDER_ALL_DTL T
  LEFT JOIN TEMP.G_SRM_PRICE_ORDER_TEMP        TEMP
    ON T.ORGANIZATION_ID = TEMP.ORGANIZATION_ID
   AND T.ITEM_ID = TEMP.INVENTORY_ITEM_ID
 WHERE TEMP.INVENTORY_ITEM_ID IS NULL;

其中主表不到40万,重表 30万,但是一直跑不出来,经过查看,map执行失败,这种情况下,我们应该设置参数set hive.auto.convert.join=false;阻止进行map join查询,让它走common join

特殊不等值查询

-- 语句一
SELECT t.statdate,
  c.cname,
  count(t.cookieid)
FROM tmpdb.city c
JOIN ecdata.ext_trackflow t ON (t.area1= c.cname
            OR t.area2 =c.cname
            OR t.area3 = c.cname)
WHERE t.statdate>='20140818' and t.statdate<='20140824'
  AND platform='pc'
GROUP BY t.statdate,
c.cname;

-- 把上面的语句修改为
-- 语句二
SELECT dt,
       name,
       count(cid)
FROM
  (SELECT t.statdate dt,
          c.cname name,
          t.cookieid cid
   FROM tmpdb.city c
   JOIN ecdata.ext_trackflow t ON t.area1 =c.cname
   WHERE t.statdate>='20140818'
     AND t.statdate<='20140824'
     AND platform='pc'
   UNION ALL SELECT t.statdate dt,
     c.cname name,
     t.cookieid cid
   FROM tmpdb.city c
   JOIN ecdata.ext_trackflow t ON t.area2 =c.cname
   WHERE t.statdate>='20140818'
     AND t.statdate<='20140824'
     AND platform='pc'
   UNION ALL SELECT t.statdate dt,
     c.cname name,
     t.cookieid cid
   FROM tmpdb.city c
   JOIN ecdata.ext_trackflow t ON t.area3 =c.cname
   WHERE t.statdate>='20140818'
     AND t.statdate<='20140824'
     AND platform='pc') tmp_trackflow
GROUP BY dt,
         name;

-- 而不是修改为
-- 语句三
SELECT t.statdate,
  c.cname,
  count(t.cookieid)
FROM tmpdb.city c
JOIN ecdata.ext_trackflow t
WHERE t.statdate>='20140818'
  AND t.statdate<='20140824'
  AND platform='pc'
  AND (t.area1= c.cname
  OR t.area2 =c.cname
  OR t.area3 = c.cname)
GROUP BY t.statdate,
    c.cname;
-- 因为语句三会做笛卡尔积,很慢

谨防数据倾斜

如:

insert overwrite table temp.temp_css_phone_addr
select distinct a.user_id, b.mobile, a.longitude, a.latitude
from
    dw_dmp.dw_user_addr_info a
left outer join
    dw_dmp.dw_user_phone_info b
on
    (a.user_id = b.user_id)
where
    b.mobile is not NULL and b.mobile <> "" and
    a.longitude is not NULL and a.latitude is not NULL and
    a.longitude <> "" and a.latitude <> "" and 
    a.user_id not in 
     (select distinct user_id from temp.temp_css_id_integration_result);

其实这个语句不是那么复杂,可是整个语句跑了10几个小时也跑不出来,并且还失败了,为什么呢?

其实这里就这个reduce执行的时间过长,且还把磁盘空间撑爆了,原来是内部有条数据特别多,导致reduce数据倾斜,这种怎么处理呢

1. 设置参数
hive.map.aggr=true
Map 端部分聚合,相当于Combiner
hive.groupby.skewindata=true
有数据倾斜的时候进行负载均衡,当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作
2.在业务逻辑优化效果的不大情况下,有些时候是可以将倾斜的数据单独拿出来处理。最后union回去(具体参考后文数据倾斜处理)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/419320.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2023年世界前沿科技发展态势及2024年趋势展望——综述篇

源自&#xff1a;全球技术地图 “人工智能技术与咨询” 发布 一、2023年前沿科技发展与竞争态势总结 &#xff08;一&#xff09;人工智能引领前沿技术加速进步&#xff0c;产业应用一触即发&#xff0c;技术奇点苗头出现 &#xff08;二&#xff09;科技之变引发战争形态之…

express+mysql+vue,从零搭建一个商城管理系统7--文件上传,大文件分片上传

提示&#xff1a;学习express&#xff0c;搭建管理系统 文章目录 前言一、安装multer&#xff0c;fs-extra二、新建config/upload.js三、新建routes/upload.js四、修改routes下的index.js五、修改index.js六、新建上传文件test.html七、开启jwt验证token&#xff0c;通过login接…

嵌入式通信协议对比介绍(SPI/I2C/UART/RS485/CAN)

1 前言 首先来看看一些基本的概念&#xff1a; 串行通信&#xff1a; 这指的是在通信线路上一次只能传输一个位&#xff08;或字节&#xff09;的数据。每个位依次传输&#xff0c;因此通信是按顺序进行的。这可以用于较简单的系统或长距离通信&#xff0c;但可能导致较低的传…

抖音视频评论关键词批量下载软件|视频内容提取工具

我们团队自主研发的视频评论关键词批量下载软件&#xff0c;为您带来全新的视频获取方式&#xff0c;让您轻松实现对特定关键词的视频搜索和批量下载。以下是软件操作说明的框架&#xff1a; 软文框架&#xff1a; 操作简要说明&#xff1a;说明使用工具的基本流程&#xff0c…

记录java.util.Map.getOrDefault()方法导致JSP编译失败异常:Unable to compile class for JSP

记录java.util.Map.getOrDefault()方法导致JSP编译失败异常:Unable to compile class for JSP; 一、报错信息&#xff1a; type Exception report message Unable to compile class for JSP: description The server encountered an internal error that prevented it from fu…

C 嵌入式系统设计模式 15:基本并发概念

本书的原著为&#xff1a;《Design Patterns for Embedded Systems in C ——An Embedded Software Engineering Toolkit 》&#xff0c;讲解的是嵌入式系统设计模式&#xff0c;是一本不可多得的好书。 本系列描述我对书中内容的理解。本文章描述嵌入式并发和资源管理模式之一…

芯科科技为全球首批原生支持Matter-over-Thread的智能锁提供强大助力,推动Matter加速成为主流技术

智能锁领域的先锋企业U-tec和Nuki选择芯科科技解决方案&#xff0c;成为Matter-over-Thread应用的领先者 致力于以安全、智能无线连接技术&#xff0c;建立更互联世界的全球领导厂商Silicon Labs&#xff08;亦称“芯科科技”&#xff0c;NASDAQ&#xff1a;SLAB&#xff09;今…

软考中级 软件设计师备考经验

考试介绍 软考中级的软件设计师需要考两个部分&#xff0c;选择题和大题&#xff0c;每科满分75&#xff0c;需要在同一次考试中两科同时大于等于45分才算通过。考试的内容包括计算机组成原理、数据结构、数据库、专业英语、信息安全、计算机网络等&#xff0c;范围比较广但考…

T2I:zero shot笔记

1 Title Zero-Shot Text-to-Image Generation&#xff08;Aditya Ramesh 、 Mikhail Pavlov 、Gabriel Goh Scott Gray、 Chelsea Voss 、 Alec Radford 、 Mark Chen 、Ilya Sutskever&#xff09; 2 Conclusion This study describes a simple approach for this ta…

在vue前端开发中基于refreshToken和axios拦截器实现token的无感刷新

文章目录 一、需求背景二、token刷新的方案1、根据过期时间重新获取2、定时刷新token接口3、使用了RefreshToken 三、关于RefreshToken四、Refresh Token的优点五、Refresh Token的工作原理六、Refresh Token的使用流程七、Refresh Token的实现步骤1、登录成功后保存AccessToke…

持安科技孙维伯:零信任在攻防演练下的最佳实践|DISCConf 2023

近日&#xff0c;在2023数字身份安全技术大会上&#xff0c;持安科技联合创始人孙维伯应主办方的特别邀请&#xff0c;发表了主题为“零信任在攻防演练下的最佳实践”的演讲。 孙维伯在2023数字身份安全技术大会上发表演讲 以下为本次演讲实录&#xff1a; 我是持安科技的联合…

WPF 【十月的寒流】学习笔记(2):MVVM中是怎么实现通知的

文章目录 前言相关链接代码仓库项目配置代码初始代码ViewPersonViewModel 尝试老办法通知解决方案ObservableCollectionBindingListICollectionView 总结 前言 我们这次详细了解一下列表通知的底层是怎么实现的 相关链接 十月的寒流 MVVM实战技巧之&#xff1a;可被观测的集合…

深入理解Java中的优先级队列(堆)——PriorityQueue

引言&#xff1a; 在Java中&#xff0c;优先级队列&#xff08;PriorityQueue&#xff09;是一种基于堆结构实现的队列&#xff0c;其中每个元素都有一个优先级&#xff0c;优先级高的元素在队列中具有更高的优先级&#xff0c;排在前面。优先级队列常用于任务调度、事件处理等…

js 面试运行机制和存储(从以下几方面理解),栈和堆的理解

1 工作原理 每个浏览器都有自己的引擎&#xff0c;通过引擎把代码解析运行起来。 2 生命周期 3-1 内存分配 3-2 内存使用 3-3 内存回收 3 栈和堆的理解 timer也是个函数--所以也是引用类型。 4 如何运行 以下可忽略 首先声明变量&#xff0c;放在左侧栈中执行&#xff0c;在执行…

MATLAB环境下一种新颖的类脉冲信号的高分辨率时频分析方法

一般情况下&#xff0c;机械振动信号或地震信号是非平稳的。而传统傅立叶变换只能应用于平稳信号分析&#xff0c;故不适用于非平稳信号。所以&#xff0c;我们需要采用时频分析方法。时频分析方法能达到同时在时间域和频率域对信号进行分析的目的&#xff0c;得到信号在不同时…

makefileGDB使用

一、makefile 1、make && makefile makefile带来的好处就是——自动化编译&#xff0c;一旦写好&#xff0c;只需要一个make命令&#xff0c;整个工程完全自动编译&#xff0c;极大的提高了软件开发的效率 下面我们通过如下示例来进一步体会它们的作用&#xff1a; ①…

从预训练到通用智能(AGI)的观察和思考

1.预训练词向量 预训练词向量&#xff08;Pre-trained Word Embeddings&#xff09;是指通过无监督学习方法预先训练好的词与向量之间的映射关系。这些向量通常具有高维稠密特征&#xff0c;能够捕捉词语间的语义和语法相似性。最著名的预训练词向量包括Google的Word2Vec&#…

(2024,MixLoRA,任务干扰,独立因子选择,条件因子选择)使用 LoRA 的条件混合进行多模态指令调优

Multimodal Instruction Tuning with Conditional Mixture of LoRA 公和众和号&#xff1a;EDPJ&#xff08;进 Q 交流群&#xff1a;922230617 或加 VX&#xff1a;CV_EDPJ 进 V 交流群&#xff09; 目录 0. 摘要 3. 任务干扰在多模态指令调优中的 LoRA 应用 3.1 背景&am…

深度神经网络联结主义的本质

一、介绍 在新兴的人工智能 (AI) 领域&#xff0c;深度神经网络 (DNN) 是一项里程碑式的成就&#xff0c;突破了机器学习、模式识别和认知模拟的界限。这一技术奇迹的核心是一个与认知科学本身一样古老的思想&#xff1a;联结主义。本文深入探讨了联结主义的基本原理&#xff0…

Nodejs 第四十三章(redis)

Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的内存数据结构存储系统&#xff0c;它提供了一个高效的键值存储解决方案&#xff0c;并支持多种数据结构&#xff0c;如字符串&#xff08;Strings&#xff09;、哈希&#xff08;Hashes&#xff09;、列表&a…