深入理解Java中的优先级队列(堆)——PriorityQueue

引言:

        在Java中,优先级队列(PriorityQueue)是一种基于堆结构实现的队列,其中每个元素都有一个优先级,优先级高的元素在队列中具有更高的优先级,排在前面。优先级队列常用于任务调度、事件处理等场景。本文将详细介绍Java中的优先级队列(基于堆实现)及提供示例来帮助理解。

 一、优先级队列 

(1)概念

       前面介绍过队列, 队列是一种先进先出(FIFO)的数据结构 ,但有些情况下, 操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列 ,该中场景下,使用队列显然不合适,比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话.

        在这种情况下, 数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。 这种数据结构就是 优先级队列(Priority Queue)。

二、优先级队列的模拟实现

JDK1.8 中的 PriorityQueue底层使用了堆这种数据结构 ,而堆实际就是在完全二叉树的基础上进行了一些调整。

(1)堆的概念 

       如果有一个 关键码的集合 K = {k0  k1  k2    kn-1} ,把它的所有元素 按完全二叉树的顺序存储方式存储在一个一维数组中 并满足: Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0 , 1 , 2… ,则 称为小堆 ( 或大堆) 。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质:

堆中某个节点的值总是不大于或不小于其父节点的值;

堆总是一棵完全二叉树。

大根堆和小根堆的示例图如下: 

(2)堆的存储方式  

从堆的概念可知, 堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储

 

注意:对于 非完全二叉树,则不适合使用顺序方式进行存储 ,因为为了能够还原二叉树, 空间中必须要存储空节点,就会导致空间利用率比较低

将元素存储到数组中后,可以根据二叉树性质 对树进行还原。假设 i 为节点在数组中的下标,则有:

如果 i 为 0 ,则 i 表示的节点为根节点,否则 i 节点的双亲节点为 (i - 1)/2

如果 2 * i + 1 小于节点个数,则节点 i 的左孩子下标为 2 * i + 1 ,否则没有左孩子

如果 2 * i + 2 小于节点个数,则节点 i 的右孩子下标为 2 * i + 2 ,否则没有右孩子

(3)堆的创建

堆向下调整

我们来思考一个问题:对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据,如果将其创建成堆呢?

 

仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可。 

向下过程(以小堆为例):

1. 让 parent 标记需要调整的节点, child 标记 parent 的左孩子 (注意:parent如果有孩子一定先是有左孩子)

2. 如果 parent 的左孩子存在,即 :child < size , 进行以下操作,直到 parent 的左孩子不存在

        (1)parent右孩子是否存在,存在找到左右孩子中最小的孩子,让 child 进行标

        (2)将parent 与较小的孩子 child 比较,如果:

parent 小于较小的孩子 child ,调整结束

否则:交换 parent 与较小的孩子 child ,交换完成之后, parent 中大的元素向下移动,可能导致子树不满足对的性质,因此需要继续向下调整,即parent = child ; child = parent*2+1; 然后继续 2 。

 

public void shiftDown(int[] array, int parent) {
// child先标记parent的左孩子,因为parent可能右左没有右
        int child = 2 * parent + 1;
        int size = array.length;
        while (child < size) {
// 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记
            if(child+1 < size && array[child+1] < array[child]){
                child += 1;
            }
// 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了
            if (array[parent] <= array[child]) {
                break;
            }else{
// 将双亲与较小的孩子交换
                int t = array[parent];
                array[parent] = array[child];
                array[child] = t;
// parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整
                parent = child;
                child = parent * 2 + 1;
            }
        }
    }

 注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。

时间复杂度分析:

最坏的情况 即图示的情况, 从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O(\log N

堆的创建

那对于普通的序列 { 1,5,3,8,7,6 } ,即根节点的左右子树不满足堆的特性,又该如何调整呢?

public static void createHeap(int[] array) {
// 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整
        int root = ((array.length-2)>>1);
        for (; root >= 0; root--) {
            shiftDown(array, root);
        }
}

时间复杂度的计算:

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明 ( 时间复杂度本来看的就是近似值,多几个节点不影响最终结果) :

(4)堆的插入与删除

堆的插入

堆的插入总共需要两个步骤:

1. 先将元素放入到底层空间中 ( 注意:空间不够时需要扩容 )

2. 将最后新插入的节点向上调整,直到满足堆的性质

 

向上调整的代码如下: 

    public void shiftUp(int child) {
// 找到child的双亲
        int parent = (child - 1) / 2;
        while (child > 0) {
// 如果双亲比孩子大,parent满足堆的性质,调整结束
            if (array[parent] > array[child]) {
                break;
            }
            else{
// 将双亲与孩子节点进行交换
                int t = array[parent];
                array[parent] = array[child];
                array[child] = t;
// 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增
                child = parent;
                parent = (child - 1) / 2;
            }
        }
    }
堆的删除

 注意:堆的删除一定删除的是堆顶元素。具体如下:

1. 将堆顶元素对堆中最后一个元素交换

2. 将堆中有效数据个数减少一个

3. 对堆顶元素进行向下调整

 

三、常用接口介绍

(1)PriorityQueue的特性

Java 集合框架中提供了 PriorityQueue 和 PriorityBlockingQueue 两种类型的优先级队列, PriorityQueue是线程不安全的  PriorityBlockingQueue是线程安全的 ,本文主要介绍 PriorityQueue 。

 

关于PriorityQueue的使用要注意:

1. 使用时必须导入 PriorityQueue 所在的包,即:

import java.util.PriorityQueue;

2. PriorityQueue 中放置的 元素必须要能够比较大小,不能插入无法比较大小的对象 ,否则会抛出 ClassCastException异常

3. 不能插入null对象 否则会抛出 NullPointerException

4. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容

5. 插入和删除元素的时间复杂度为O(logN)

6. PriorityQueue 底层使用了 堆数据结构

7. PriorityQueue 默认情况下是小堆 --- 即每次获取到的元素都是最小的元素


(2)PriorityQueue常用接口介绍  

优先级队列的构造

此处只是列出了 PriorityQueue 中常见的几种构造方式,其他的可以参考帮助文档。

    static void TestPriorityQueue(){
// 创建一个空的优先级队列,底层默认容量是11
        PriorityQueue<Integer> q1 = new PriorityQueue<>();
// 创建一个空的优先级队列,底层的容量为initialCapacity
        PriorityQueue<Integer> q2 = new PriorityQueue<>(100);
        ArrayList<Integer> list = new ArrayList<>();
        list.add(4);
        list.add(3);
        list.add(2);
        list.add(1);
// 用ArrayList对象来构造一个优先级队列的对象
// q3中已经包含了三个元素
        PriorityQueue<Integer> q3 = new PriorityQueue<>(list);
        System.out.println(q3.size());
        System.out.println(q3.peek());
    }

注意:默认情况下,PriorityQueue队列是小堆,如果需要大堆需要用户提供比较器 

// 用户自己定义的比较器:直接实现Comparator接口,然后重写该接口中的compare方法即可
class IntCmp implements Comparator<Integer>{
    @Override
    public int compare(Integer o1, Integer o2) {
        return o2-o1;
    }
}
public class TestPriorityQueue {
    public static void main(String[] args) {
        PriorityQueue<Integer> p = new PriorityQueue<>(new IntCmp());
        p.offer(4);
        p.offer(3);
        p.offer(2);
        p.offer(1);
        p.offer(5);
        System.out.println(p.peek());
    }
}

此时创建出来的就是一个大根堆。

(2)插入/删除/获取优先级最高的元素 

 

    static void TestPriorityQueue2(){
        int[] arr = {4,1,9,2,8,0,7,3,6,5};
// 一般在创建优先级队列对象时,如果知道元素个数,建议就直接将底层容量给好
// 否则在插入时需要不多的扩容
// 扩容机制:开辟更大的空间,拷贝元素,这样效率会比较低
        PriorityQueue<Integer> q = new PriorityQueue<>(arr.length);
        for (int e: arr) {
            q.offer(e);
        }
        System.out.println(q.size()); // 打印优先级队列中有效元素个数
        System.out.println(q.peek()); // 获取优先级最高的元素
// 从优先级队列中删除两个元素之和,再次获取优先级最高的元素
        q.poll();
        q.poll();
        System.out.println(q.size()); // 打印优先级队列中有效元素个数
        System.out.println(q.peek()); // 获取优先级最高的元素
        q.offer(0);
        System.out.println(q.peek()); // 获取优先级最高的元素
// 将优先级队列中的有效元素删除掉,检测其是否为空
        q.clear();
        if(q.isEmpty()){
            System.out.println("优先级队列已经为空!!!");
        }
        else{
            System.out.println("优先级队列不为空");
        }
    }

 注意:以下是JDK 1.8中,PriorityQueue的扩容方式: 

    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    private void grow(int minCapacity) {
        int oldCapacity = queue.length;
// Double size if small; else grow by 50%
        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
                (oldCapacity + 2) :
                (oldCapacity >> 1));
// overflow-conscious code
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        queue = Arrays.copyOf(queue, newCapacity);
    }
    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
                Integer.MAX_VALUE :
                MAX_ARRAY_SIZE;
    }

优先级队列的扩容说明:

如果容量小于 64 时,是按照 oldCapacity 的 2 倍方式扩容的

如果容量大于等于 64 ,是按照 oldCapacity 的 1.5 倍方式扩容的

如果容量超过 MAX_ARRAY_SIZE ,按照 MAX_ARRAY_SIZE 来进行扩容

 

四、堆排序 

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

1. 建堆

        升序:建大堆

        降序:建小堆

2. 利用堆删除思想来进行排序

建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

 

总结:

        优先级队列在Java中是一种方便且高效的数据结构,基于堆结构实现,可以根据元素的优先级自动排序。本文介绍了Java中优先级队列的特点和示例,希望读者能更好地理解和应用优先级队列在各种场景中的实陵。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/419297.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

js 面试运行机制和存储(从以下几方面理解),栈和堆的理解

1 工作原理 每个浏览器都有自己的引擎&#xff0c;通过引擎把代码解析运行起来。 2 生命周期 3-1 内存分配 3-2 内存使用 3-3 内存回收 3 栈和堆的理解 timer也是个函数--所以也是引用类型。 4 如何运行 以下可忽略 首先声明变量&#xff0c;放在左侧栈中执行&#xff0c;在执行…

MATLAB环境下一种新颖的类脉冲信号的高分辨率时频分析方法

一般情况下&#xff0c;机械振动信号或地震信号是非平稳的。而传统傅立叶变换只能应用于平稳信号分析&#xff0c;故不适用于非平稳信号。所以&#xff0c;我们需要采用时频分析方法。时频分析方法能达到同时在时间域和频率域对信号进行分析的目的&#xff0c;得到信号在不同时…

makefileGDB使用

一、makefile 1、make && makefile makefile带来的好处就是——自动化编译&#xff0c;一旦写好&#xff0c;只需要一个make命令&#xff0c;整个工程完全自动编译&#xff0c;极大的提高了软件开发的效率 下面我们通过如下示例来进一步体会它们的作用&#xff1a; ①…

从预训练到通用智能(AGI)的观察和思考

1.预训练词向量 预训练词向量&#xff08;Pre-trained Word Embeddings&#xff09;是指通过无监督学习方法预先训练好的词与向量之间的映射关系。这些向量通常具有高维稠密特征&#xff0c;能够捕捉词语间的语义和语法相似性。最著名的预训练词向量包括Google的Word2Vec&#…

(2024,MixLoRA,任务干扰,独立因子选择,条件因子选择)使用 LoRA 的条件混合进行多模态指令调优

Multimodal Instruction Tuning with Conditional Mixture of LoRA 公和众和号&#xff1a;EDPJ&#xff08;进 Q 交流群&#xff1a;922230617 或加 VX&#xff1a;CV_EDPJ 进 V 交流群&#xff09; 目录 0. 摘要 3. 任务干扰在多模态指令调优中的 LoRA 应用 3.1 背景&am…

深度神经网络联结主义的本质

一、介绍 在新兴的人工智能 (AI) 领域&#xff0c;深度神经网络 (DNN) 是一项里程碑式的成就&#xff0c;突破了机器学习、模式识别和认知模拟的界限。这一技术奇迹的核心是一个与认知科学本身一样古老的思想&#xff1a;联结主义。本文深入探讨了联结主义的基本原理&#xff0…

Nodejs 第四十三章(redis)

Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的内存数据结构存储系统&#xff0c;它提供了一个高效的键值存储解决方案&#xff0c;并支持多种数据结构&#xff0c;如字符串&#xff08;Strings&#xff09;、哈希&#xff08;Hashes&#xff09;、列表&a…

React之组件定义和事件处理

一、组件的分类 在react中&#xff0c;组件分为函数组件和class组件&#xff0c;也就是无状态组件和有状态组件。 * 更过时候我们应该区别使用无状态组件&#xff0c;因为如果有状态组件会触发生命周期所对应的一些函数 * 一旦触发他生命周期的函数&#xff0c;它就会影响当前项…

X-pin扁线电机制造工艺复杂 联合电子率先实现其量产

X-pin扁线电机制造工艺复杂 联合电子率先实现其量产 扁线电机是扁平铜包线绕组的电机。扁线电机是目前主流电机绕组形式&#xff0c;根据技术路线不同&#xff0c;扁线电机分为I-pin扁线电机、Hair-pin扁线电机、X-pin扁线电机等&#xff0c;其中X-pin扁线电机是指采用X-pin绕组…

utniy urp shinyssrr插件使用

文章目录 前言步骤1首先在URP的配置文件里添加SSR后处理2 修改RenderingPath为延迟渲染3 启用深度纹理4 为物体添加脚本 插件下载 前言 用来实现屏幕空间反射效果 unity 版本为2021.3.8LTS&#xff0c;低版本的untiy URP的参数设置位置z可能会不同 步骤 1首先在URP的配置文件…

专访win战略会任志雄:澳门旅游业复苏 挖掘游客消费潜力

南方财经:各个国家地区的客商都有不同文化背景和消费习惯,应如何更好吸引外地客商来澳门? win战略会任志雄:首先,周边国家的市场潜力都非常大,包括韩国、日本、越南和印度。 这些年来,这些国家的经济增长都很高,居民的出游比重也在持续增加,如果他们国家的居民把澳门作为一个重…

初学JavaWeb开发总结

0 什么是Web开发 Web: 全球广域网&#xff0c;又称万维网(www World Wide Web)&#xff0c;能够通过浏览器访问的网站。 Web开发&#xff0c;就是开发网站的&#xff0c;如&#xff1a;淘宝、京东等等。 1 网站的工作流程 流程&#xff1a; 浏览器先向前端服务器请求前端资…

一文看清楚流程自定义表单究竟好不好用

提升办公协作效率、做好数据资源利用率的话&#xff0c;可以用什么样的软件实现&#xff1f;在低代码技术平台领域奋斗多年&#xff0c;流辰信息服务商可以给大家推荐专用的流程自定义表单及低代码技术平台整套服务方案。如果你想知道流程自定义表单好不 好用&#xff0c;有什么…

idc业务具体包含哪些业务

IDC业务&#xff0c;即互联网数据中心业务&#xff0c;是指提供互联网基础设施服务的一种商业模式。它包括了许 多不同的业务&#xff0c;每个业务都有其特定的功能和用途。下面将详细介绍IDC业务具体包含哪些业务。 1. 服务器托管服务&#xff1a; 服务器托管是IDC业务中最基…

transformer--解码器

在编码器中实现了编码器的各种组件&#xff0c;其实解码器中使用的也是这些组件&#xff0c;如下图&#xff1a; 解码器组成部分: 由N个解码器层堆叠而成每个解码器层由三个子层连接结构组成第一个子层连接结构包括一个多头自注意力子层和规范化层以及一个残差连接第二个子层连…

<专利>机器人3D视觉快速定位抓取方法及系统

摘要&#xff0c;此专利无可用的关键技术信息&#xff0c;基本都是下面几句话反复说。。。 本发明提供了一种机器人3D快速定位抓取方法及系统&#xff0c; 包括&#xff1a; 通过高速的3D结构光成像对目标物体的表面轮廓进行扫描&#xff0c; 形成点云数据&#xff1b;对所述点…

浅谈排序算法(冒泡,插入,归并)

对于数据的排序&#xff0c;有多种方法&#xff0c;对应这不同的时间复杂度&#xff08;效率不同&#xff09;。 ​一、冒泡排序&#xff08;Bubble Sort&#xff09; 冒泡排序&#xff08;Bubble Sort&#xff09;是一种简单的排序算法。 算法思路&#xff1a; 1. 从第一对相…

利用 Python 抓取数据探索汽车市场趋势

一、引言 随着全球对环境保护意识的增强和技术的进步&#xff0c;新能源汽车作为一种环保、高效的交通工具&#xff0c;正逐渐受到人们的关注和青睐。在这个背景下&#xff0c;对汽车市场的数据进行分析和研究显得尤为重要。 本文将介绍如何利用 Python 编程语言&#xff0c;结…

扭蛋机小程序开发,线上扭蛋机成为市场发展主流?

近几年以来&#xff0c;潮玩市场一直处于领先状态&#xff0c;市场规模逐渐扩大。在潮玩行业中&#xff0c;除了盲盒&#xff0c;受到各大群体喜欢的就是扭蛋机了&#xff0c;它因为价格低、品类多样、收藏价值高的优势吸引了各个群体的消费者。 当下&#xff0c;线上用户体量…

基于springboot + vue实现的前后端分离-在线旅游网站系统(项目 + 论文)

项目介绍 本旅游网站系统采用的数据库是MYSQL &#xff0c;使用 JSP 技术开发&#xff0c;在设计过程中&#xff0c;充分保证了系统代码的良好可读性、实用性、易扩展性、通用性、便于后期维护、操作方便以及页面简洁等特点。 技术选型 后端: SpringBoot Mybatis 数据库 : MyS…