[分类指标]准确率、精确率、召回率、F1值、ROC和AUC、MCC马修相关系数

准确率、精确率、召回率、F1值

定义:

1、准确率(Accuracy)

准确率指分类正确的样本占总样本个数的比例。准确率是针对所有样本的统计量。它被定义为:

 

准确率能够清晰的判断我们模型的表现,但有一个严重的缺陷: 在正负样本不均衡的情况下,占比大的类别往往会成为影响 Accuracy 的最主要因素,此时的 Accuracy 并不能很好的反映模型的整体情况。

例如,一个测试集有正样本99个,负样本1个。模型把所有的样本都预测为正样本,那么模型的Accuracy为99%,看评价指标,模型的效果很好,但实际上模型没有任何预测能力。

2、精确率(Precision)

精确率又称为查准率,是针对预测结果而言的一个评价指标。指在分类正确的正样本个数占分类器判定为正样本的样本个数的比例。精确率是对部分样本的统计量,侧重对分类器判定为正类的数据的统计。它被定义为:

3、召回率(Recall)

召回率指分类正确的正样本个数占真正的正样本个数的比例。召回率也是对部分样本的统计量,侧重对真实的正类样本的统计。它被定义为

Precision 与 Recall 的权衡
精确率高,意味着分类器要尽量在 “更有把握” 的情况下才将样本预测为正样本, 这意味着精确率能够很好的体现模型对于负样本的区分能力,精确率越高,则模型对负样本区分能力越强。

召回率高,意味着分类器尽可能将有可能为正样本的样本预测为正样本,这意味着召回率能够很好的体现模型对于正样本的区分能力,召回率越高,则模型对正样本的区分能力越强。

从上面的分析可以看出,精确率与召回率是此消彼长的关系, 如果分类器只把可能性大的样本预测为正样本,那么会漏掉很多可能性相对不大但依旧满足的正样本,从而导致召回率降低。

那么当不同模型的Recall和Precision各有优势时该如何选择模型?此时可以通过F1 Score来比较。

 

4、F1分数(F1 Score)

F1 Score是精准率和召回率的调和平均值,它同时兼顾了分类模型的准确率和召回率,是统计学中用来衡量二分类(或多任务二分类)模型精确度的一种指标。它的最大值是1,最小值是0,值越大意味着模型越好。 它定义为:

优缺点:

准确率、精确率、召回率、F1 值主要用于分类场景。

准确率可以理解为预测正确的概率,其缺陷在于:当正负样本比例非常不均衡时,占比大的类别会影响准确率。如异常点检测时:99% 的都是非异常点,那我们把所有样本都视为非异常点准确率就会非常高了。

精确率,查准率可以理解为预测出的东西有多少是用户感兴趣的;

召回率,查全率可以理解为用户感兴趣的东西有多少被预测出来了。

一般来说精确率和召回率是一对矛盾的度量。为了更好的表征学习器在精确率和召回率的性能度量,引入 F1 值。

5.  ROC曲线和评价指标AUC

ROC:接受者操作特性曲线(receiver operating characteristic curve,简称ROC曲线),是指在特定刺激条件下,以被试在不同判断标准下所得的虚报概率P(y/N)为横坐标,以击中概率P(y/SN)为纵坐标,画得的各点的连线。

所以需要计算两个值1、虚报概率 FPR; 2、击中概率 TPR

首先利用混淆矩阵计算ROC:

假阳性率(False Positive Rate, FPR)(虚报概率):  横坐标,N是真实负样本的个数,FP是N个负样本中被分类器预测为正样本的个数。 FPR=FP/(FP+TN) 

真阳性率(True Positive Rate, TPR)(击中概率):纵坐标,  TPR=TP / (TP+FN)

ROC曲线特性:当测试集中的正负样本分布发生变化了,ROC曲线可以保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。 

为什么ROC不受样本不平衡的影响呢?

TPR考虑的都是正例,既分母TP+FN是真实正例的数目;FPR考虑的都是负例,分母FP+TN是真实负例的数目。

想一下ROC曲线绘画过程,可以看成以预测为正例的概率进行排序,然后概率由大到小依次把样本预测为正例,每次把一个样本当成正例ROC曲线上就多了一个点(TPR,FPR)。这个过程也可以看成一个由大到小的阈值去筛选概率高的样本作为正例(预测值)。

如果负例增加到10倍,可以假设增加的负样本与原有的负样本保持独立同分布。

TPR:在学习器和上述阈值不变的情况下,我们看一下负例增加前后TPR会不会变化。首先分母不会变。再考虑分子,因为阈值和学习器也不变,那么对于真实的正例来说,预测结果不变,则TPR不变。

FPR:对于FPR来说,分母变为10*(FP+TN),给定学习器和阈值,因为假设增加的数据与原数据独立同分布,那么大于这个阈值的负样本(label为负)也会变为原来的10倍,即10*FP。所以FPR也不变。

上述的讨论是对于ROC中的一个点讨论的,再让阈值动起来的话,那么可以得到ROC上每个点都不变。当然这是理想情况,实际上由于数据噪声等影响,曲线肯定会有轻微扰动,但整体不会有较大的变化。

6、马修斯相关系数 MCC(Matthews correlation coefficient):


MCC 主要用于衡量二分类问题,其综合考虑了 TP, TN, FP, FN, 是一个比较均衡的指标, 对于样本不均衡情况下也可以使用。(由precision、recall、F1的计算公式可以看出这三个指标完全与TN无关,只关心正类而忽略负类的表现。而当类别不平衡时ACC的评估指标无法关注到少数类。)

MCC的取值范围在 [-1, 1] , 取值为1 表示预测与实际完全一致, 取值为0表示预测的结果还不如随机预测的结果, -1 表示预测结果与实际的结果完全不一致。

因此我们看到, MCC 本质上描述了预测结果与实际结果之间的相关系数。

马修斯相关系数公式为:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/418170.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【OJ比赛日历】快周末了,不来一场比赛吗? #03.02-03.08 #11场

CompHub[1] 实时聚合多平台的数据类(Kaggle、天池…)和OJ类(Leetcode、牛客…)比赛。本账号会推送最新的比赛消息,欢迎关注! 以下信息仅供参考,以比赛官网为准 目录 2024-03-02(周六) #4场比赛2024-03-03…

如何解决局域网tcp延迟高来进行安全快速内外网传输呢?

在当今企业运营中,数据的快速流通变得至关重要,但局域网内的TCP延迟问题却成为了数据传输的障碍。本文旨在分析局域网TCP延迟的成因,并探讨几种企业数据传输的常见模式,以及如何为企业选择合适的传输策略,以确保数据在…

软考52-上午题-【数据库】-关系模式2

一、关系模式的回顾 见:软考38-上午题-【数据库】-关系模式 二、关系模式 2-1、关系模式的定义 示例: 念法:A——>B A决定B,或者,B依赖于A。 2-2、函数依赖 1、非平凡的函数依赖 如果X——>Y,&a…

Javascript:输入输出

目录 一.前言 二.正文 1.输出 2.输入 3.字面量 概念: 三.结语 一.前言 Javascript作为运行浏览器的语言,对于学习前端的同学来说十分重要,那么从现在开始我们将开始介绍有关 Javascript。 二.正文 1.输出 document.write() : 向body内…

UVa11726 Crime Scene

题目链接 UVa11726 - Crime Scene 题意 给定n(n≤100)个物体,每个物体都是一个圆或者k(k≤10)边形,用长度尽量小的绳子把它们包围起来。 分析 孟加拉国Manzurur Rahman Khan (Sidky)大神出的难题&#xff…

HTML5+CSS3+JS小实例:右键菜单

实例:右键菜单 技术栈:HTML+CSS+JS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"> <head><meta charset="UTF-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><met…

Linux x86平台获取sys_call_table

文章目录 前言一、根据call *sys_call_table来获取二、使用dump_stack三、使用sys_close参考资料 前言 Linux 3.10.0 – x86_64 最简单获取sys_call_table符号的方法&#xff1a; # cat /proc/kallsyms | grep sys_call_table ffffffff816beee0 R sys_call_table一、根据cal…

想给金三银四找工作的程序员几点建议,被面试官问的Android问题难倒了

Android没凉&#xff0c;只是比以前难混了 多年前Android异军突起&#xff0c;成了新的万亿级市场&#xff0c;无数掘金人涌入&#xff0c;期待可以一展拳脚。 那时候大环境下的手游圈&#xff0c;只要你能有个可以运行的连连看就能找到工作&#xff0c;走上赛道被浪潮推着前…

LeetCode73题:矩阵置零(python3)

代码思路&#xff1a; 这里用矩阵的第一行和第一列来标记是否含有0的元素&#xff0c;但这样会导致原数组的第一行和第一列被修改&#xff0c;无法记录它们是否原本包含 0。因此我们需要额外使用两个标记变量分别记录第一行和第一列是否原本包含 0。 class Solution:def setZe…

二、TensorFlow结构分析(2)

目录 1、会话 1.1 __init__(target,graphNone,configNone) 1.2 会话的run() 1.3 feed操作 TF数据流图图与TensorBoard会话张量变量OP高级API 1、会话 1.1 __init__(target,graphNone,configNone) def session_demo():# 会话的演示# Tensorflow实现加法运算a_t tf.constan…

python+Django+Neo4j中医药知识图谱与智能问答平台

文章目录 项目地址基础准备正式运行 项目地址 https://github.com/ZhChessOvO/ZeLanChao_KGQA 基础准备 请确保您的电脑有以下环境&#xff1a;python3&#xff0c;neo4j 在安装目录下进入cmd&#xff0c;输入指令“pip install -r requirement.txt”,安装需要的python库 打…

【二叉搜索树】【递归】【迭代】Leetcode 700. 二叉搜索树中的搜索

【二叉搜索树】【递归】【迭代】Leetcode 700. 二叉搜索树中的搜索 二叉搜索树解法1 递归法解法2 迭代法 ---------------&#x1f388;&#x1f388;题目链接&#x1f388;&#x1f388;------------------- 二叉搜索树 二叉搜索树&#xff08;Binary Search Tree&#xff…

【详识JAVA语言】运算符

什么是运算符 计算机的最基本的用途之一就是执行数学运算&#xff0c;比如&#xff1a; int a 10; int b 20;a b; a < b; 上述 和< 等就是运算符&#xff0c;即&#xff1a;对操作数进行操作时的符号&#xff0c;不同运算符操作的含义不同。 作为一门计算机语言&…

mprpc分布式RPC网络通信框架

mprpc 项目介绍 该项目是一个基于muduo、Protobuf和Zookeeper实现的轻量级分布式RPC网络通信框架。 可以把任何单体架构系统的本地方法调用&#xff0c;重构成基于TCP网络通信的RPC远程方法调用&#xff0c;实现同一台机器的不同进程之间的服务调用&#xff0c;或者不同机器…

FreeRTOS 软件定时器

目录 一、软件定时器简介 1、软件定时器概述 2、编写回调函数的注意事项 二、软件定时器实现机制 1、软件定时器实现机制 2、软件定时器相关配置 三、单次定时器 四、周期定时器 五、软件定时器的基本操作 1、创建软件定时器 2、复位软件定时器 3、开启软件定时器 …

【ZooKeeper 】安装和使用,以及java客户端

目录 1. 前言 2. ZooKeeper 安装和使用 2.1. 使用Docker 安装 zookeeper 2.2. 连接 ZooKeeper 服务 2.3. 常用命令演示 2.3.1. 查看常用命令(help 命令) 2.3.2. 创建节点(create 命令) 2.3.3. 更新节点数据内容(set 命令) 2.3.4. 获取节点的数据(get 命令) 2.3.5. 查看…

深度学习_15_过拟合欠拟合

过拟合和欠拟合 过拟合和欠拟合是训练模型中常会发生的事&#xff0c;如所要识别手势过于复杂&#xff0c;如五角星手势&#xff0c;那就需要更改高级更复杂的模型去训练&#xff0c;若用比较简单模型去训练&#xff0c;就会导致模型未能抓住手势的全部特征&#xff0c;那简单…

Gitlab: 私有化部署

目录 1. 说明 2. 资源要求 3. 安装 4. 配置实践 4.1 服务器 4.2 人员与项目 4.2 部署准备 4.2.1 访问变量及用户账号设置 4.2.2 Runner设置 4.2.3 要点 5. 应用项目 CI/CD 6. 参考 1. 说明 gitlab是一个强大且免费的代码管理/部署工具&#xff0c;能统一集成代码仓…

力扣 674. 最长连续递增序列

题目来源&#xff1a;https://leetcode.cn/problems/longest-continuous-increasing-subsequence/description/ C题解&#xff1a;贪心算法。把所有元素遍历一遍&#xff0c;比较它与上个数的大小&#xff0c;大的话更新长度tmp&#xff0c;小的话初始化长度tmp&#xff0c;并与…

linux nasm汇编中调用printf不报错,但调用scanf报错。抛出了分段错误(核心转储)

当我写了如下汇编时 ; nasm -f elf64 -g -F dwarf charsin.asm ; gcc charsin.o -no-pie -o charsin ; ld -o eatclib eatclib.o ; gdb eatclib[SECTION .data]SPrompt db Enter string data, followed by Enter: ,0IPrompt db Enter an integer value, followed by Enter: ,1…