改进的yolo交通标志tt100k数据集目标检测(代码+原理+毕设可用)

YOLO TT100K: 基于YOLO训练的交通标志检测模型

在这里插入图片描述

在原始代码基础上:
  1. 修改数据加载类,支持CoCo格式(使用cocoapi);
  2. 修改数据增强;
  3. validation增加mAP计算;
  4. 修改anchor;

注: 实验开启weight_decay或是 不对conv层和FC层的bias参数,以及BN层的参数进行权重衰减,mAP下降很大,mAP@[.5:.95]=0.244

训练集

[Tsinghua-Tencent 100K]

下载的训练集主要包含train和test两部分,分别为6107和3073张图片。统计标注文件,共221类。详细统计每类标志个数,发现很多类的数量为0,所以清楚了部分数量为0的label,剩下类别为151,其中仍存在很多类数量<5.

TT100k转为CoCo格式:

  • 交通标志类别:
    数据集中包含数百种不同类型的交通标志实例,例如停止标志、限速标志、方向指示标志等。截至某个时间点,数据集有超过232种不同的交通标志类别,这意味着每种类别都有一定数量的样本图片用于训练和测试模型。
  • i2r类别: 这个类别涉及图像到文本的匹配任务,提供一张图像及五个候选文字描述,目标是确定哪一描述最准确地匹配该图像的内容。
  • i2 类别: 这个类别代表图像到图像的匹配,给定两张图像,判断这两张图像是否描述的是同一场景或物体,适用于图像检索和匹配任务。
  • Other 类别: 可能包括不属于上述特定任务的其他类型的数据,或者是为了填充和扩充数据集而添加的样本 参考 [yolo-v3脚本]

python scripts/tt100k2coco.py

测试

pretrained model
密码: lcou

下载到model_data,运行:python predict.py

结果

在这里插入图片描述

mAP of yolo

对比yolov3:

在这里插入图片描述

如上,mAP不高,分析原因,可能如下:

  1. 数据集分辨率2048x2048,yolov4输入为608,且交通标志中存在很多小物体,原图resize到608,很多目标太小难以检测;
  2. 某些类别数量过少;

可优化:

  1. 借鉴YOLT方法检测小物体;
  2. 数据集扩充/增强;
  3. 使用更优秀的检测方法;
  4. 改进loss,解决类别不均衡可参考

主要代码

# ----------------------------------------------------#
#   对视频中的predict.py进行了修改,
#   将单张图片预测、摄像头检测和FPS测试功能
#   整合到了一个py文件中,通过指定mode进行模式的修改。
# ----------------------------------------------------#
import time

import cv2
import numpy as np
from PIL import Image

from yolo import YOLO

if __name__ == "__main__":
    yolo = YOLO()
    # -------------------------------------------------------------------------#
    #   mode用于指定测试的模式:
    #   'predict'表示单张图片预测
    #   'video'表示视频检测
    #   'fps'表示测试fps
    # -------------------------------------------------------------------------#
    mode = "predict"
    # -------------------------------------------------------------------------#
    #   video_path用于指定视频的路径,当video_path=0时表示检测摄像头
    #   video_save_path表示视频保存的路径,当video_save_path=""时表示不保存
    #   video_fps用于保存的视频的fps
    #   video_path、video_save_path和video_fps仅在mode='video'时有效
    #   保存视频时需要ctrl+c退出才会完成完整的保存步骤,不可直接结束程序。
    # -------------------------------------------------------------------------#
    video_path = 0
    video_save_path = ""
    video_fps = 25.0

    if mode == "predict":
        '''
        1、该代码无法直接进行批量预测,如果想要批量预测,可以利用os.listdir()遍历文件夹,利用Image.open打开图片文件进行预测。
        具体流程可以参考get_dr_txt.py,在get_dr_txt.py即实现了遍历还实现了目标信息的保存。
        2、如果想要进行检测完的图片的保存,利用r_image.save("img.jpg")即可保存,直接在predict.py里进行修改即可。 
        3、如果想要获得预测框的坐标,可以进入yolo.detect_image函数,在绘图部分读取top,left,bottom,right这四个值。
        4、如果想要利用预测框截取下目标,可以进入yolo.detect_image函数,在绘图部分利用获取到的top,left,bottom,right这四个值
        在原图上利用矩阵的方式进行截取。
        5、如果想要在预测图上写额外的字,比如检测到的特定目标的数量,可以进入yolo.detect_image函数,在绘图部分对predicted_class进行判断,
        比如判断if predicted_class == 'car': 即可判断当前目标是否为车,然后记录数量即可。利用draw.text即可写字。
        '''
        while True:
            img = input('Input image filename:')
            try:
                image = Image.open(img)
            except:
                print('Open Error! Try again!')
                continue
            else:
                r_image = yolo.detect_image(image)
                r_image.save(img.split("/")[-1])
                r_image.show()

    elif mode == "video":
        capture = cv2.VideoCapture(video_path)
        if video_save_path != "":
            fourcc = cv2.VideoWriter_fourcc(*'XVID')
            size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
            out = cv2.VideoWriter(video_save_path, fourcc, video_fps, size)

        fps = 0.0
        while (True):
            t1 = time.time()
            # 读取某一帧
            ref, frame = capture.read()
            # 格式转变,BGRtoRGB
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            # 转变成Image
            frame = Image.fromarray(np.uint8(frame))
            # 进行检测
            frame = np.array(yolo.detect_image(frame))
            # RGBtoBGR满足opencv显示格式
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)

            fps = (fps + (1. / (time.time() - t1))) / 2
            print("fps= %.2f" % (fps))
            frame = cv2.putText(frame, "fps= %.2f" % (fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

            cv2.imshow("video", frame)
            c = cv2.waitKey(1) & 0xff
            if video_save_path != "":
                out.write(frame)

            if c == 27:
                capture.release()
                break
        capture.release()
        out.release()
        cv2.destroyAllWindows()

    elif mode == "fps":
        test_interval = 100
        img = Image.open('img/street.jpg')
        tact_time = yolo.get_FPS(img, test_interval)
        print(str(tact_time) + ' seconds, ' + str(1 / tact_time) + 'FPS, @batch_size 1')
    else:
        raise AssertionError("Please specify the correct mode: 'predict', 'video' or 'fps'.")

最后,计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,私聊会回复!↓↓↓↓↓↓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/416157.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring Boot项目中如何上传头像?

在我们常见的各大App中&#xff0c;或多或少我们都见过上传头像的功能吧&#xff1f;&#xff1f; 但是在Spring Boot项目中如何上传头像呢&#xff1f; 上传头像主要用到RequestPart注解 来看一下小编的代码吧&#xff01; RestController RequestMapping("/param"…

嵌入式烧录报错:板端IP与PC的IP相同

报错&#xff1a; 配置 实际上我配置并没有错。 服务器IP&#xff08;就是本机&#xff09;、板端IP、网关。此处网关必须与板子IP配套&#xff08;可以不存在&#xff09;。 解决 我网卡配置了多个IP。一番删除添加还是报错。 于是点击服务器IP&#xff0c;换成别的&#x…

基于redis实现【最热搜索】和【最近搜索】功能

目录 一、前言二、分析问题三、针对两个问题&#xff0c;使用redis怎么解决问题&#xff1f;1、字符串String2、列表List3、字典Hash4、集合Set5、有序集合ZSet6、需要解决的五大问题 四、编写代码1.pom依赖2.application.yml配置3.Product商品实体4.用户最近搜索信息5.redis辅…

TCP缓存

TCP缓存是指TCP协议在数据传输过程中使用的一种机制&#xff0c;用于临时存储和管理数据包。它主要有三个作用&#xff1a;提高网络性能、保证数据的可靠性和实现流量控制。 首先&#xff0c;TCP缓存可以提高网络性能。当发送端发送数据时&#xff0c;TCP协议会将数据分割成若…

从Spring Boot应用上下文获取Bean定义及理解其来源

前言 在Spring框架中&#xff0c;Bean是组成应用程序的核心单元。特别是在Spring Boot项目中&#xff0c;通过使用SpringApplication.run()方法启动应用后&#xff0c;我们可以获得一个ConfigurableApplicationContext实例&#xff0c;这个实例代表了整个应用程序的运行时环境…

golang使用gorm操作mysql1

1.mysql连接配置 package daoimport ("fmt""gorm.io/driver/mysql""gorm.io/gorm""gorm.io/gorm/logger" )var DB *gorm.DB// 连接数据库&#xff0c;启动服务的时候&#xff0c;init方法就会执行 func init() {username : "roo…

【Unity】导入IAP插件后依赖冲突问题 com.android.billingclient冲突

【Unity】Attribute meta-data#com.google.android.play.billingclient.version 多版本库冲突_unity billingclient-CSDN博客 打开mainTemplate.gradle 找到dependencies { } 在里面末尾加上如下&#xff1a; configurations.all {exclude group: com.android.billingclien…

【奋楫扬帆,赓续前行】中创算力2024年度工作会议

2024年2月28日 【中创算力2024年度工作会议】 在正商国际广场如期举行 全体中创员工齐聚一堂 回首2023年 攻坚克难&#xff0c;再创佳绩 励精图治&#xff0c;创新求强 奋楫扬帆&#xff0c;赓续前行 让我们再回顾 属于中创算力的“高光时刻” &#xff08;政府调研指…

spring boot整合cache使用memcached

之前讲了 spring boot 整合 cache 做 simple redis Ehcache 三种工具的缓存 上文 windows系统下载安装 memcached 我们装了memcached 但spring boot没有将它的整合纳入进来 那么 我们就要自己来处理客户端 java历史上 有过三种客户端 那么 我们用肯定是用最好的 Xmemcached …

MapGIS农业信息化解决方案—共享服务(2)

农业服务手机“小秘书” 农业服务“小秘书”是基于主流智能手机开发的农业服务客户端应用,实现常规农事气象信息、预警信号接收,农业服务产品订阅、专家咨询、农业测土配方施肥建议等功能。农业服务“小秘书”支持目前主流操作系统,普通上网手机通过 Web 即可登陆使用,同时…

数据可视化基础与应用-01-数据可视化概述

总结 本系列是数据可视化基础与应用的第02篇&#xff0c;主要介绍数据可视化概述&#xff0c;包括数据可视化的历史&#xff0c;原理&#xff0c;工具等。 认识大数据可视化 数据是什么 信息科学领域面临的一个巨大挑战是数据爆炸。据IDC Global DataSphere统计&#xff0c…

计讯物联5G RedCap网关TG463化繁为简,推动5G赋能千行百业

5G RedCap&#xff0c;全称为Reduced Capability&#xff0c;即在5G的基础上&#xff0c;对部分功能进行化繁为简后形成的新技术标准&#xff0c;故又称轻量化5G。作为高性价比下的精简技术&#xff0c;5G RedCap技术具备成本低、低功耗、兼顾5G等特点&#xff0c;能够在确保应…

阿里云2024年服务器2核4G配置评测_CPU内存带宽_优惠价格

阿里云2核4G服务器多少钱一年&#xff1f;2核4G服务器1个月费用多少&#xff1f;2核4G服务器30元3个月、85元一年&#xff0c;轻量应用服务器2核4G4M带宽165元一年&#xff0c;企业用户2核4G5M带宽199元一年。本文阿里云服务器网整理的2核4G参加活动的主机是ECS经济型e实例和u1…

注意!存在49%的软件采购者,要求供应商提供软件SBOM文件!

更多网络安全干货内容&#xff1a;点此获取 ——————— “我们发现&#xff0c;软件系统间接依赖中存在的漏洞数量&#xff0c;是直接依赖的三倍以上。” Snyk 《2020 年开源安全状况报告》中讲到。开源软件中的绝大多数安全漏洞都存在于间接依赖关系中&#xff0c;而不是…

java面试题之nginx篇

1. 什么是Nginx&#xff1f; Nginx是一个 轻量级/高性能的反向代理Web服务器&#xff0c;他实现非常高效的反向代理、负载平衡&#xff0c;他可以处理2-3万并发连接数&#xff0c;官方监测能支持5万并发&#xff0c;现在中国使用nginx网站用户有很多&#xff0c;例如&#xff…

禽类屠宰加工污废水处理需要哪些工艺设备

禽类屠宰加工产生的污废水处理是保护环境并维护生态平衡的重要一环。针对禽类屠宰加工行业的特点&#xff0c;需采用适合的工艺设备来处理污废水。以下是几种常用的工艺设备&#xff1a; 1. 沉淀池&#xff1a;沉淀池是禽类屠宰加工污废水处理的首要设备之一。其作用是将含有悬…

如何使用Logstash搜集日志传输到es集群并使用kibana检测

引言&#xff1a;上一期我们进行了对Elasticsearch和kibana的部署&#xff0c;今天我们来解决如何使用Logstash搜集日志传输到es集群并使用kibana检测 目录 Logstash部署 1.安装配置Logstash &#xff08;1&#xff09;安装 &#xff08;2&#xff09;测试文件 &#xff…

高压高能碳陶瓷无感电阻的制作以及应用?

由于现有需求&#xff0c;许多现代电子电路和设备都会经历瞬态脉冲和浪涌。这反过来又导致需要“设计”瞬态浪涌保护&#xff0c;尤其是在电机控制器等电路中。当电机启动时&#xff0c;此时消耗的电流过大&#xff0c;可能导致电阻器故障。同样&#xff0c;如果电容器用于电机…

基于Python3的数据结构与算法 - 05 堆排序

目录 一、堆排序之树的基础知识 1. 树的定义 2. 树的一些概念 二、堆排序二叉树的基本知识 1. 二叉树的定义 2. 二叉树的存储方式&#xff08;表达方式&#xff09; 2.1 顺序存储方式 三、堆 1. 堆的定义 2. 堆的向下调整性质 四、堆排序的过程 1. 建造堆 五、时…

如何用好应用权限,保护隐私数据?银河麒麟桌面操作系统V10 SP1 2303 update2新功能解析

为您介绍银河麒麟桌面操作系统V10 SP1 2303 update2隐私设置和权限管理功能&#xff0c;为您的个人数据安全保驾护航。 说到个人数据隐私&#xff0c;在科技重塑生活本质的数字世界&#xff0c;个人信息遭受持续威胁。2018年&#xff0c;某国际知名社交平台因安全系统漏洞而遭…