《TCP/IP详解 卷一》第10章 UDP和IP分片

目录

10.1 引言

10.2 UDP 头部

10.3 UDP校验和

10.4 例子

10.5 UDP 和 IPv6

10.6 UDP-Lite

10.7 IP分片

10.7.1 例子:IPV4 UDP分片

10.7.2 重组超时

10.8 采用UDP的路径MTU发现

10.9 IP分片和ARP/ND之间的交互

10.10 最大UDP数据报长度

10.11 UDP服务器的设计

10.11.1 IP地址和UDP端口号

10.11.2 限制本地IP地址

10.11.3 使用多地址

10.11.4 限制远端IP地址

10.11.5 每端口多服务器的使用

10.11.6 跨越地址族:IPv4和IPv6

10.11.7 流量和拥塞控制的缺失

10.12 UDP/IPV4和UDP/IPV6数据报的转换

10.13 互联网中的UDP

10.14 与UDP和IP分片相关的攻击

10.15 总结


10.1 引言

UDP(User Datagram Protocol):用户数据报协议。一种传输层协议。

        IPv4中协议字段值:17。

                特点:

                        有消息边界。

                        开销更小,因为没有TCP复杂机制。

当UDP应用程序每次调用send/write,就发出一个UDP数据报。

而TCP不一定,因为TCP可能分段,重组。

即TCP应用程序执行多次send/write调用会组合成一个数据包发送,或可能一个send/write调用被分成多个数据包发送。

10.2 UDP 头部

头部格式如下:

字段:

        源端口

        目的端口

        长度:UDP报文总长度,包括头部和数据。

        校验和:校验整个UDP报文。

每个socket在创建时必须指定协议类型(TCP或UDP),并绑定到特定端口。

因此,一个套接字不能同时监听TCP/UDP相同端口。

一个主机可以创建两个socket,分别监听TCP和UDP的相同端口号,表示两种不同服务。

10.3 UDP校验和

UDP校验和:校验范围覆盖UDP头部、UDP数据,伪头部。

伪头部(pseudo-header):

        计算UDP校验和时,根据IP头信息生成的虚拟头部。

        伪头部格式通常包括:

                源IP、目标IP、协议类型(UDP),UDP数据报总长等。

        作用:提供更多信息,确保校验更精确。

伪头部细节如下图:

NAT会改变报文IP和端口,所以经过NAT后需要重新校验和。

IPv4头中也有校验和,但只校验IPv4头内容,不包括IP载荷。

        在每跳都要重新计算,因为TTL字段值减小。

小结:

        IPv4头的校验和字段:只校验IPv4头内容。

        传输层TCP/UDP头的校验和字段:校验范围不仅包含传输层头,还有载荷。

10.4 例子

10.5 UDP 和 IPv6

IPv6中TCP/UDP都需要伪头部来计算校验和。

Teredo隧道:

        IPv6数据被封装成IPv4 UDP数据报后,发给Teredo中继,中继解封装后把IPv6报文转发给主机。

Teredo和GRE对比:

        通用性:

                GRE更通用,可封装任何类型数据包。

                Teredo只用于IPv4 UDP封装IPv6数据。

        实现方式:

                GRE:不需要服务器或中继。

                Teredo:需要服务器和中继。

10.6 UDP-Lite

UDP:校验是可选的,要么校验整个UDP报文,要么不校验。

UDP-Lite:对UDP数据一部分校验,而不是整个数据报校验。

        所以未校验部分,容忍比特差错。

UDP-Lite:有单独的IPv4协议和IPv6协议号。算是一种新的传输层协议。

所以UDP- Lite有一个校验和覆盖范围字段,表示需要校验哪部分数据。

        最小值为8,即只校验UDP-Lite头。

        特殊值:0,表示校验整个负载。

socket简化程序举例,设置UDP-Lite校验和覆盖范围:

int main() {

        int sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDPLITE);

        int send_cscov = 8; // 只校验UDP-Lite头。

        setsockopt(sockfd, IPPROTO_UDPLITE, UDPLITE_SEND_CSCOV, &send_cscov, sizeof(send_cscov)) ;

        

        int recv_cscov = 0; // 校验整个负载

        setsockopt(sockfd, IPPROTO_UDPLITE, UDPLITE_RECV_CSCOV, &recv_cscov, sizeof(recv_cscov));

}

10.7 IP分片

IPv6只允许源主机分片,不允许中间转发设备分片,可减少中间设备负担。

IPv4既允许源主机分片,也允许中间路由器分片。

IP数据报大于MTU则分片。

被分片IP数据报,到了目的地才会重组,这样设计有两个原因:

        1. 减轻中间路由器转发负担。

        2. 同一数据报的不同分片可能经不同路径到达目的地,此时路径上路由器不能收到所有分片,搜到没有能力重组原始数据。

10.7.1 例子:IPV4 UDP分片

数据报分片后,每个分片IPv4头中的总长度字段被修改成该分片的总长度。

任一分片丢失,整个IP数据报无法完整接收。

当TCP报文的一个分片丢失了,TCP协议栈会重传整个TCP报文段,所以通常尽量避免TCP分片。

除最后一个分片外所有分片数据部分应是8字节倍数。

tcpdump为了能打印除了第一个分片外的其他分片的端口号,尝试重组其他分片的数据报,以恢复只出现在第一个分片的UDP头部中的端口号。

10.7.2 重组超时

当任一分片最先到达时,IP层就启动计时器。

若超时前未收到所有分片,无法重组源报文,会丢弃所有分片,防止缓存耗尽。

超时时间:一般30s,60s。

只有接收到了第一个分片并且分片重组失败时,才产生ICMP错误。

10.8 采用UDP的路径MTU发现

PMTU:路径MTU 。

PMTUD:路径MTU发现。

        作用:发现路径中MTU的最小值。发送报文不超过MTU,防止分片。

UDP PMTUD原理:

        源端发送一个较大UDP数据报,并设置 DF(Don't Fragment)标志,确保不被分片。

        某个中间路由器发现数据报超过其出接口MTU,则丢弃该数据报并回复"Packet Too Big" 的ICMP 错误消息给源端。

        源端收到ICMP错误消息后,得到其中指示的MTU。于是重新发送较小的UDP数据报。

        重复该过程就获得一个可在所有路由器通过的MTU,即路径最小MTU,PMTU。

IP层会基于每个目的地址缓存一个PMTUD值,有到该目的地报文则更新,否则超时需要重新尝试PMTUD。

PPPoE MTU:1492

        1500字节去除了6字节PPPoE头部,2字节PPP头部。

10.9 IP分片和ARP/ND之间的交互

10.10 最大UDP数据报长度

理论一个IPv4数据报的最大长度是65535字节。

但实际存在限制,如:

        1. 系统,setsocketopt设置收发缓存大小。

        2. 应用程序。read/write指定读写大小数目小于一个UDP数据报,大多数时候发生API截断数据报,丢弃数据报里超过接收应用程序指定字节数的数据。

MSG_TRUNC标志位:

        当socket收到超过recv函数指定接收缓冲区大小时,如果设置该标志位,系统将丢弃缓冲区以外数据,并且不报告任何错误,而是正常返回已接收数据长度。

MSG_TRUNC使用方法:

        len = recvfrom(sockfd, buf, BUF_SIZE, MSG_TRUNC, (struct sockaddr *)&client_addr, &client_len);

如何获取截断数据大小:

        socklen_t optlen = sizeof(recv_len);

        getsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, &recv_len, &optlen);

而TCP是连续的字节流,没有消息边界,不会被截断。

10.11 UDP服务器的设计

10.11.1 IP地址和UDP端口号

SO_REUSEADDR:

        一个socket选项,当一个socket被关闭后,它的端口号会继续一段时间的被占用。

        在这个时间内,其他程序无法绑定相同端口号,出现"Address already in use"错误。

        设置SO_REUSEADDR选项后,当socket关闭后,立即可以被其他程序绑定,无需等待一段时间。

如何设置SO_REUSEADDR属性:

        int reuse = 1;

        setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof(reuse));

10.11.2 限制本地IP地址

两种策略:

        1. 只有报文目的IP地址是该接收接口的IP时,才接收数据。

        2. 任何本地接口均可接收到目的IP是某本地接口之一的数据。

10.11.3 使用多地址

一台主机上,可以开启多个服务器进程,都使用同一个端口号,但每个服务器进程使用不同本机IP地址。

        通过ip addr add给本机设备配置多个IP地址。

此时需要用SO_REUSEADDR选项告诉系统允许重用相同的端口。

10.11.4 限制远端IP地址

可设置是否只接收来自指定源IPv4地址和端口号的UDP数据报。

10.11.5 每端口多服务器的使用

10.11.6 跨越地址族:IPv4和IPv6

10.11.7 流量和拥塞控制的缺失

UDP没有流量和拥塞控制机制。

10.12 UDP/IPV4和UDP/IPV6数据报的转换

10.13 互联网中的UDP

UDP占据了的互联网流量的10% ~ 40%,随着P2P应用增加,UDP流量也在上升。

互联网总体流量只有极少是分片的(大约分组数的0.3%,字节数的0.8%),而其中分片流量的68.3%是UDP。

常见分片流量如:

        多媒体视频流量(应用层大包)

        VPN隧道中封装/隧道流量(多层封装)

10.14 与UDP和IP分片相关的攻击

常见UDP DoS攻击:

        1. 短时间大流量。UDP没有流控。

        2. 放大攻击。伪造IP源成受害者地址,并设置目的地址为广播。于是广播目的地都回复报文给该受害者。

        3. 泪滴攻击。构造一个重叠偏移分片,可覆盖前一分片部分数据。

        4. 发送不带任何数据的分片,攻击IPv4重组程序。

10.15 总结

UDP是简单协议。

需要组播广播时使用UDP,可避免连接开销。

UDP使用场景:多媒体,P2P。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/415542.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2024深度学习主流框架对比

tensorFlow 是最受欢迎和广泛使用的深度学习框架之一,目前在github的start数为181k。 TensorFlow是一个由Google Brain团队开发的开源深度学习框架。它允许开发者创建多种机器学习模型,包括卷积神经网络、循环神经网络和深度神经网络等,该框架…

全国产飞腾E2000Q +复旦微FPGA的轨道交通、电力解决方案

产品概述 ITX-XMF201是一款高性能边缘计算网关主板,采用飞腾E2000Q 4核处理器,国产化率达到95%国产化。 板载2电口,2路CAN,6路RS232接口,1路RS485接口,16路GPIO,可以满足银行、轨道交通、电力等…

【ArcGIS Pro二次开发】(83):ProWindow和WPF的一些技巧

在ArcGIS Pro二次开发中,SDK提供了一种工具界面【ArcGIS Pro ProWindow】。 关于ProWindow的用法,之前写过一篇基础的教程: 【ArcGIS Pro二次开发】(13):ProWindow的用法_arcgispro二次开发教程-CSDN博客 主要是对几个常用控件…

Java开发的核心模式 - MVC

文章目录 1、MVC设计模式2、Web开发本质3、服务器的性能瓶颈 1、MVC设计模式 MVC设计模式示意图 在整个Java学习之旅中,MVC(Model-View-Controller)设计模式无疑占据着极其重要的地位,堪称理解和掌握Java项目开发精髓的钥匙。如…

【Python】Python实现串口通信(Python+Stm32)

🎉欢迎来到Python专栏~Python实现串口通信 ☆* o(≧▽≦)o *☆嗨~我是小夏与酒🍹 ✨博客主页:小夏与酒的博客 🎈该系列文章专栏:Python学习专栏 文章作者技术和水平有限,如果文中出现错误,希望…

3D数字孪生

数字孪生(Digital Twin)是物理对象、流程或系统的虚拟复制品,用于监控、分析和优化现实世界的对应物。 这些数字孪生在制造、工程和城市规划等领域变得越来越重要,因为它们使我们能够在现实世界中实施改变之前模拟和测试不同的场景…

Spring 类型转换、数值绑定与验证(三)— Formatting 与 Validation

1 Formatting 在Spring中用于格式化数据及根据地域展示不同格式的数据。 图 Formatting接口 UML 1.1 注解驱动Formatting 自定义像“DateTimeFormat”注解来对相关字段格式化的步骤为: 自定义注解。定义一个实现AnnotationFormatterFactory接口的工厂类。往容器…

H3C OSPF Stub特殊区域+认证实验

H3C OSPF Stub特殊区域认证实验 实验拓扑 ​​ 实验需求 按照图示配置 IP 地址,所有路由器配置环回口 IP 地址为 X.X.X.X/32​ 作为 Router-id,X 为设备编号(R5 除外)按照图示分区域配置 OSPFR1 上配置默认路由,指…

数据卷dockerfile

目录 一、数据卷 1. 简介 2. 数据卷和数据卷容器 1. 数据卷: 2. 数据卷容器: 二、自定义镜像 1. 作用 2. 自定义centos 3. 自定义tomcat8 一、数据卷 1. 简介 数据卷是一个可供一个或多个容器使用的特殊目录,它将主机操作系统目录直…

小白水平理解面试经典题目leetcode. 606 Construct String from Binary Tree【递归算法】

Leetcode 606. 从二叉树构造字符串 题目描述 例子 小白做题 坐在自习室正在准备刷题的小白看到这道题,想想自己那可是没少和白月光做题呢,也不知道小美刷题刷到哪里了,这题怎么还没来问我,难道是王谦谦去做题了? 这…

使用Java和PostGis的全国A级风景区数据入库实战

目录 前言 一、数据介绍 1、空间数据 2、属性表说明 3、QGIS数据预览 二、PostGIS空间数据库设计 1、空间表结构 三、Java空间入库 1、实体定义 2、数据操作Mapper 3、业务层实现 4、入库 5、数据入库验证 总结 前言 星垂平野阔,月涌大江流”“晴川历历…

.NET生成MongoDB中的主键ObjectId

前言 因为很多场景下我们需要在创建MongoDB数据的时候提前生成好主键为了返回或者通过主键查询创建的业务,像EF中我们可以生成Guid来,本来想着要不要实现一套MongoDB中ObjectId的,结果发现网上各种各样的实现都有,不过好在阅读C#…

机器人内部传感器阅读梳理及心得-速度传感器-模拟式速度传感器

速度传感器是机器人内部传感器之一,是闭环控制系统中不可缺少的重要组成部分,它用来测量机器人关节的运动速度。可以进行速度测量的传感器很多,如进行位置测量的传感器大多可同时获得速度的信息。但是应用最广泛、能直接得到代表转速的电压且…

基于stm32F103的座面声控台灯

1.基本内容: 设计一个放置在桌面使用的台灯,使用220v交流电供电。具备显示屏能够实时显示日期(年、月、日和星期),时间(小时、分钟、秒)和温度(摄氏度);能够通…

高校物品捐赠管理系统|基于springboot高校物品捐赠管理系统设计与实现(源码+数据库+文档)

高校物品捐赠管理系统目录 目录 基于springboot高校物品捐赠管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户信息管理 2、捐赠信息管理 3、论坛信息管理 4、公告信息管理 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计算…

回归预测 | Matlab实现CPO-BiTCN-BiGRU冠豪猪算法优化双向时间卷积门控循环单元多变量回归预测

回归预测 | Matlab实现CPO-BiTCN-BiGRU冠豪猪算法优化双向时间卷积门控循环单元多变量回归预测 目录 回归预测 | Matlab实现CPO-BiTCN-BiGRU冠豪猪算法优化双向时间卷积门控循环单元多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现CPO-BiTCN-B…

比特币暴涨背后:通胀重现

作者:秦晋 这是一篇知名投资人安东尼庞普里亚诺(Anthony Pompliano)在2月27日写给投资者的一封信。 庞普里亚诺在信中将比特币暴涨归因于「通胀重现」。他表示,精明的投资者看到通胀将至,于是开始大手笔购买比特币。他…

【北京迅为】《iTOP-3588开发板网络环境配置手册》第2章 电脑、开发板直连交换机或路由器

RK3588是一款低功耗、高性能的处理器,适用于基于arm的PC和Edge计算设备、个人移动互联网设备等数字多媒体应用,RK3588支持8K视频编解码,内置GPU可以完全兼容OpenGLES 1.1、2.0和3.2。RK3588引入了新一代完全基于硬件的最大4800万像素ISP&…

[云原生] k8s之pod容器

一、pod的相关知识 1.1 Pod基础概念 Pod是kubernetes中最小的资源管理组件,Pod也是最小化运行容器化应用的资源对象。一个Pod代表着集群中运行的一个进程。kubernetes中其他大多数组件都是围绕着Pod来进行支撑和扩展Pod功能的,例如,用于管理…

【Java程序设计】【C00320】基于Springboot的招生宣传管理系统(有论文)

基于Springboot的招生宣传管理系统(有论文) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的招生宣传管理系统,本系统有管理员以及招生人员二种角色; 前台:首页、专业介绍、师资力量、联…