大模型(LLM)的token学习记录-I

文章目录

  • 基本概念
    • 什么是token?
    • 如何理解token的长度?
    • 使用openai tokenizer 观察token的相关信息
    • open ai的模型
  • token的特点
    • token如何映射到数值?
    • token级操作:精确地操作文本
    • token 设计的局限性
  • tokenization
  • token 数量对LLM 的影响
    • 训练模型参数量与训练数据量统计
    • 影响模型效果的因素有哪些?
  • 参考

基本概念

什么是token?

  • 在 LLM 中,token代表模型可以理解和生成的最小意义单位,是 LLM 进行处理的最小单元。
  • 根据所使用的特定标记化【Tokenization】方案,token可以表示单词、单词的一部分,甚至只表示字符。采用的方案由模型的类型和大小决定
  • token被赋予数值或标识符,并按序列或向量排列,并被输入或从模型中输出,是模型的语言构件。
  • 模型理解这些token之间的统计关系,并擅长做token的接龙
  • token化是将输入和输出文本分割成可以由LLM AI模型处理的较小单元的过程
  • token作为原始文本数据和 LLM 可以使用的数字表示之间的桥梁。LLM使用token来确保文本的连贯性和一致性,有效地处理各种任务,如写作、翻译和回答查询。

如何理解token的长度?

下面是一些有用的经验法则,可以帮助理解token的长度:

  • 1 token ~= 4 chars in English
  • 1 token ~= ¾ words
  • 100 tokens ~= 75 words
  • 1-2 句子 ~= 30 tokens
  • 1 段落 ~= 100 tokens
  • 1,500 单词 ~= 2048 tokens
  • 一个unicode字符可以拆分为多个token

使用openai tokenizer 观察token的相关信息

可以通过https://platform.openai.com/tokenizer 来观察token 的相关信息。

可以看到,GPT-3.5&GPT-4 与 GPT-3(Legacy) 模型tokenizer方案是不同的,前者产生的token数据量变少,针对中文的处理更加合理。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

open ai的模型

OpenAI API由一组不同的模型提供支持,这些模型具有不同的功能和价位

GPT-4是一个大型多模态模型(接受文本或图像输入和输出文本),由于其更广泛的一般知识和先进的推理能力,它可以比我们以前的任何模型都更准确地解决难题。

MODELDESCRIPTION
GPT-4 and GPT-4 TurboA set of models that improve on GPT-3.5 and can understand as well as generate natural language or code
GPT-3.5 TurboA set of models that improve on GPT-3.5 and can understand as well as generate natural language or code
DALL·EA model that can generate and edit images given a natural language prompt
TTSA set of models that can convert text into natural sounding spoken audio
WhisperA model that can convert audio into text
EmbeddingsA set of models that can convert text into a numerical form
ModerationA fine-tuned model that can detect whether text may be sensitive or unsafe
GPT baseA set of models without instruction following that can understand as well as generate natural language or code
DeprecatedA full list of models that have been deprecated along with the suggested replacement

token的特点

token如何映射到数值?

词汇表将token映射到唯一的数值表示。LLM 使用数字输入,因此词汇表中的每个标记都被赋予一个唯一标识符或索引。这种映射允许 LLM 将文本数据作为数字序列进行处理和操作,从而实现高效的计算和建模。

为了捕获token之间的意义和语义关系,LLM 采用token编码技术。这些技术将token转换成称为嵌入的密集数字表示。嵌入式编码语义和上下文信息,使 LLM 能够理解和生成连贯的和上下文相关的文本。像transformer这样的体系结构使用self-attention机制来学习token之间的依赖关系并生成高质量的嵌入。

token级操作:精确地操作文本

token级别的操作是对文本数据启用细粒度操作。LLM 可以生成token、替换token或掩码token,以有意义的方式修改文本。这些token级操作在各种自然语言处理任务中都有应用,例如机器翻译、情感分析和文本摘要等。

token 设计的局限性

在将文本发送到 LLM 进行生成之前,会对其进行tokenization。token是模型查看输入的方式ーー单个字符、单词、单词的一部分或文本或代码的其他部分。每个模型都以不同的方式执行这一步骤,例如,GPT 模型使用字节对编码(BPE)

token会在tokenizer发生器的词汇表中分配一个 id,这是一个将数字与相应的字符串绑定在一起的数字标识符。例如,“ Matt”在 GPT 中被编码为token编号[13448],而 “Rickard”被编码为两个标记,“ Rick”,“ ard”带有 id[8759,446],GPT-3拥有1400万字符串组成的词汇表。

token 的设计大概存在着以下的局限性:

  • 大小写区分:不同大小写的单词被视为不同的标记。“ hello”是token[31373] ,“ Hello”是[15496] ,而“ HELLO”有三个token[13909,3069,46]。
  • 数字分块不一致。数值“380”在 GPT 中标记为单个“380”token。但是“381”表示为两个token[“38”,“1”]。“382”同样是两个token,但“383”是单个token[“383”]。一些四位数字的token有: [“3000”] ,[“3”,“100”] ,[“35”,“00”] ,[“4”,“500”]。这或许就是为什么基于 GPT 的模型并不总是擅长数学计算的原因。
  • 尾随的空格。有些token有空格,这将导致提示词和单词补全的有趣行为。例如,带有尾部空格的“once upon a ”被编码为[“once”、“upon”、“a”、“ ”]。然而,“once on a time”被编码为[“once”,“ upon”,“ a”,“ time”]。因为“ time”是带有空格的单个token,所以将空格添加到提示词将影响“ time”成为下一个token的概率。

tokenization

  • 将文本划分为不同token的正式过程称为 tokenization.
  • tokenization是特定于模型的。根据模型的词汇表和tokenization方案,标记可能具有不同的大小和含义。
    BPE 是一种将最频繁出现的字符对或字节合并到单个标记中的方法,直到达到一定数量的标记或词汇表大小为止。BPE 可以帮助模型处理罕见或不可见的单词,并创建更紧凑和一致的文本表示。BPE 还允许模型通过组合现有单词或标记来生成新单词或标记。词汇表越大,模型生成的文本就越多样化并富有表现力。但是,词汇表越大,模型所需的内存和计算资源就越多。因此,词汇表的选择取决于模型的质量和效率之间的权衡。

tokenization涉及到将文本分割成有意义的单元,以捕捉其语义和句法结构,可以采用各种tokenization技术,如字级、子字级(例如,使用字节对编码或 WordPiece)或字符级。根据特定语言和特定任务的需求,每种技术都有自己的优势和权衡。

  • 字节对编码(BPE):为AI模型构建子词词汇,用于合并出现频繁的字符/子字对。
  • 子词级tokenization:为复杂语言和词汇划分单词。将单词拆分成更小的单元,这对于复杂的语言很重要。
  • 单词级tokenization:用于语言处理的基本文本tokenization。每个单词都被用作一个不同的token,它很简单,但受到限制。
  • 句子片段:用习得的子词片段分割文本,基于所学子单词片段的分段。
  • 分词tokenization:采用不同合并方法的子词单元。
  • 字节级tokenization:使用字节级token处理文本多样性,将每个字节视为令牌,这对于多语言任务非常重要。
  • 混合tokenization:平衡精细细节和可解释性,结合词级和子词级tokenization。

相关的技术参见 下图:
在这里插入图片描述

token 数量对LLM 的影响

训练模型参数量与训练数据量统计

2022 年 9 月,DeepMind(Chinchilla 论文)中提出Hoffman scaling laws:表明每个参数需要大约 20 个文本token进行训练。比如一个7B的模型需要140B token,若每个token使用int32(四字节)进行编码的话,就是560GB的数据。

训练模型参数量与训练数据量的统计

参数量数据量(tokens)
1T tokens约为 2000-4000 GB 数据(与token的编码字节数相关)
llama-7B1.0 T
-13B1.0 T
-33B1.4 T
-65B1.4 T
Llama2-7B2.0 T
-13B2.0 T
-34B2.0 T
-70B2.0 T
Bloom-176B1.6 T
LaMDA-137B1.56 T
GPT-3-175B0.3 T
Jurassic-178B0.3 T
Gopher-280B0.3 T
MT-NLG 530B0.27 T
Chinchilla-70B1.4 T

影响模型效果的因素有哪些?

虽然模型可以处理或已经接受过训练的token数量确实影响其性能,但其响应的一般性或详细程度更多地是其训练数据微调和所使用的解码策略的产物。

解码策略也起着重要的作用。修改模型输出层中使用的SoftMax函数的“temperature”可以使模型的输出更加多样化(更高的温度)或者更加确定(更低的温度)。在OpenAI 的API中设置temperature的值可以调整确定性和不同输出之间的平衡。

上下文窗口: 这是模型一次可以处理的token的最大数量。如果要求模型比上下文窗口生成更多的token,它将在块中这样做,这可能会失去块之间的一致性。

不同的模型支持不同的上下文token窗口,见下表

MODELDESCRIPTIONCONTEXT WINDOWTRAINING DATA
gpt-4-0125-previewNew GPT-4 Turbo The latest GPT-4 model intended to reduce cases of “laziness” where the model doesn’t complete a task. Returns a maximum of 4,096 output tokens. Learn more.128,000 tokensUp to Dec 2023
gpt-4Currently points to gpt-4-0613. See continuous model upgrades.8,192 tokensUp to Sep 2021
gpt-4-32kCurrently points to gpt-4-32k-0613. See continuous model upgrades. This model was never rolled out widely in favor of GPT-4 Turbo.32,768 tokensUp to Sep 2021
gpt-3.5-turbo-1106GPT-3.5 Turbo model with improved instruction following, JSON mode, reproducible outputs, parallel function calling, and more. Returns a maximum of 4,096 output tokens. Learn more.16,385 tokensUp to Sep 2021
gpt-3.5-turbo-instructSimilar capabilities as GPT-3 era models. Compatible with legacy Completions endpoint and not Chat Completions.4,096 tokensUp to Sep 2021
gpt-3.5-turbo-16kLegacy Currently points to gpt-3.5-turbo-16k-0613.16,385 tokensUp to Sep 2021

等这样的大模型有一个最大token 数量限制,超过这个限制,它们就不能接受输入或生成输出
一般地, 可以尝试以下方法来解决token长度限制的问题:

  • 截断
  • 抽样
  • 重组
  • 编解码
  • 微调
    在这里插入图片描述

参考

LLM 中 Token 的通俗解释
解读大模型(LLM)的token
大模型参数量与训练数据量关系

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/414784.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

设计模式七:责任链模式

文章目录 1、责任链模式2、spring中的责任链模式Spring InterceptorServlet FilterNetty 1、责任链模式 责任链模式为请求创建了一个接收者对象的链,在这种模式下,通常每个节点都包含对另一个节点者的引用。每个节点针对请求,处理自己感兴趣…

基于springboot+vue的大学城水电管理系统(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

特征融合篇 | YOLOv8 引入通用高效层聚合网络 GELAN | YOLOv9 新模块

今天的深度学习方法专注于如何设计最合适的目标函数,以使模型的预测结果最接近真实情况。同时,必须设计一个合适的架构,以便为预测提供足够的信息。现有方法忽视了一个事实,即当输入数据经过逐层特征提取和空间转换时,会丢失大量信息。本文将深入探讨数据通过深度网络传输…

UE 贴地绘制/日历/鼠标光标滚轮位置缩放图片/UMG滚动数据从前后添加新UI/多图片批量下载 收费项目源码资源

基本里面的内容本人CSDN发的都有现成代码.里面大部分是功能实现思路.这里面是把这几个功能合成了一个完整5.1项目源码.拿到即用.收费项目源码资源. 1.贴地绘制 2.日历 3.鼠标光标滚轮位置缩放图片 \ 4.UMG滚动数据从前后添加新UI思路 5.多图片批量下载 这是整合的懒人源码包收…

Rocky Linux 运维工具yum

一、yum的简介 ​​yum​是用于在基于RPM包管理系统的包管理工具。用户可以通过 ​yum​来搜索、安装、更新和删除软件包,自动处理依赖关系,方便快捷地管理系统上的软件。 二、yum的参数说明 1、install 用于在系统的上安装一个或多个软件包 2、seach 用…

【HarmonyOS】鸿蒙开发之Video组件——第3.7章

Video组件内VideoOptions属性简介 src:设置视频地址。currentProgressRate:设置视频播放倍速,参数说明如下: number|string:只支持 0.75 , 1.0 , 1.25 , 1.75 , 2.0 。P…

JavaEE进阶(7)Spring Boot 日志(概述、用途、使用:打印日志,框架介绍,SLF4J 框架介绍、更简单的日志输出)

接上次博客:JavaEE进阶(6)SpringBoot 配置文件(作用、格式、properties配置文件说明、yml配置文件说明、验证码案例)-CSDN博客 目录 日志概述 日志的用途 日志使用 打印日志 在程序中获取日志对象 使用日志对象…

androidble蓝牙开发,12道Android高级面试题

Java面试题 1.GC机制 垃圾回收需要完成两件事:找到垃圾,回收垃圾。 找到垃圾一般的话有两种方法: 引用计数法: 当一个对象被引用时,它的引用计数器会加一,垃圾回收时会清理掉引用计数为0的对象。但这种方…

论文笔记:A survey on zero knowledge range proofs and applications

https://link.springer.com/article/10.1007/s42452-019-0989-z 描述了构建零知识区间证明(ZKRP)的不同策略,例如2001年Boudot提出的方案;2008年Camenisch等人提出的方案;以及2017年提出的Bulletproofs。 Introducti…

SpringBoot案例(黑马学习笔记)

这个案例呢,就是Tlias智能学习辅助系统。 参考接口文档完成后端功能的开 发,然后结合前端工程进行联调测试即可。 完成后的成品效果展示: 准备工作 需求&环境搭建 需求说明 部门管理 部门管理功能开发包括: ● 查询部门列…

【JavaSE】实用类——枚举类型、包装类、数学类

目录 Java API枚举优势代码示例 包装类作用包装类和基本数据类型的对应关系包装类的构造方法包装类的常用方法装箱和拆箱 留一个问题大家猜猜看包装类的特点 Math类Random类代码示例 Java API Java API(Java Application Programming Interface) 即Java应用程序编程接口&#…

设备管理系统解决方案

软件资料获取:软件项目开发全套文档下载_软件项目文档-CSDN博客 1.系统概述 1.1.需求描述 建立设备信息库,对设备相关档案的登录、整理。通过建立完善的设备档案,将设备的各类原始信息进行信息化管理,使设备档案查询工作方便快…

NoReturn与None的区别

问题来源: class xx:def __init__(self) -> NoReturn:passpycharm编译器提示如下问题: init should return None 根因探索: None 是Python的一个特殊的数据类型,用于表示空值或者没有值。当一个函数没有显式返回值时&#x…

模型预测控制MPC算法的讲解-案例(C语言代码)

目录 一、模型预测控制MPC的基本原理 1.1 建立模型 1.2 设定目标和约束条件 1.3 求解优化问题 1.4 应用控制输入 1.5 重复优化 二、模型预测控制MPC的特点 三、应用场景 四、应用案例 一个MPC算法的简化版框架: 4.1 案例系统模型 4.2 控制目标和当前状态…

【JavaWeb】

Javaweb 数据库相关概念MySQL数据库MySQL数据模型SQLDDL--操作数据库图形化客户端工具DML--操作数据DQL数据库约束 数据库设计多表查询事务 数据库相关概念 数据库 存储数据的仓库,数据是有组织的进行存储 英文:DataBase,简称DB 数据库管理系…

自然语言:信息抽取技术在CRM系统中的应用与成效

一、引言 在当今快速变化的商业环境中,客户关系管理(CRM)已成为企业成功的关键因素。CRM系统的核心在于有效地管理客户信息,跟踪与客户的每一次互动,以及深入分析这些数据以提升客户满意度和忠诚度。在我最近参与的一个…

SpringBoot+Vue全栈开发-刘老师教编程(b站)(一)

课堂内容 Java EE企业级框架:SpringBootMyBatisPlusWeb前端核心框架:VueElementUI公共云部署:前后端项目集成打包与部署 B/S(Browser/Server):浏览器/服务器架构模式 C/S(Client/Server):客户端/服务器架构模式 Maven是一个项目管理工具&…

【Java多线程】面试常考——锁策略、synchronized的锁升级优化过程以及CAS(Compare and swap)

目录 1、锁的策略 1.1、乐观锁和悲观锁 1.2、轻量级锁和重量级锁 1.3、自旋锁和挂起等待锁 1.4、普通互斥锁和读写锁 1.5、公平锁和非公平锁 1.6、可重入锁和不可重入锁 2、synchronized 内部的升级与优化过程 2.1、锁的升级/膨胀 2.1.1、偏向锁阶段 2.1.2、轻量级锁…

为什么会造成服务器丢包?

随着云服务器市场的发展和网络安全问题,服务器丢包问题成为了一个普遍存在的现象。服务器丢包是指在网络传输过程中,数据包由于各种原因未能到达目标服务器,导致数据传输中断或延迟。那么,为什么会造成服务器丢包呢?下…

naive-ui-admin 表格去掉工具栏toolbar

使用naive-ui-admin的时候,有时候不需要显示工具栏,工具栏太占地方了。 1.在src/components/Table/src/props.ts 里面添加属性 showToolbar 默认显示,在不需要的地方传false。也可以默认不显示 ,这个根据需求来。 2.在src/compo…