- 网络结构
- 代码
# CIFAR 10
'''
完整的模型训练套路:
'''
import torch.optim
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import *
# 1. 准备数据集
train_data = torchvision.datasets.CIFAR10('data',train=True,
transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10('data',train=False,
transform=torchvision.transforms.ToTensor(),
download=True)
# 数据集大小
train_data_size = len(train_data)
test_data_size = len(test_data)
print('训练数据集的长度为{}'.format(train_data_size))
print('测试数据集的长度为{}'.format(test_data_size))
# 2 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)
# 3 搭建神经网络
# 4 创建网络模型
tudui = Tudui()
# 5 损失函数
loss_fn = nn.CrossEntropyLoss()
# 6 优化器 1e-2=1x10^(-2)
learning_rate = 0.01
optimizer = torch.optim.SGD(tudui.parameters(),lr=learning_rate)
# 7 设置训练网络的一些参数
total_train_step = 0 # 记录训练次数
total_test_step = 0 # 记录测试次数
epoch = 10 #训练轮数
# 添加tensorboard
writer = SummaryWriter('logs_model')
for i in range(epoch):
print('-----------第{}轮训练开始-----------'.format(i+1))
# 训练开始
# 训练步骤开始 dropout batchNorm仅对某些层次有作用
tudui.train()
for data in train_dataloader:
imgs, targets = data
output = tudui(imgs) #训练模型的预测输出
loss = loss_fn(output,targets)
# 优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
print('训练次数是{}时,loss是{}'.format(total_train_step,loss.item()))# 加了item() tensor变成了数字
writer.add_scalar('train_loss',loss.item(),total_train_step)
# 训练完一轮,看是否训练好,有没有达到想要的需求,测试数据集中跑一篇看准确率或者损失
# 测试步骤开始
tudui.eval()
total_test_loss = 0
total_accuracy = 0
# 测试不需要对梯度进行调整
with torch.no_grad():
for data in test_dataloader:
imgs,targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs,targets)
total_test_loss += loss.item()
# accuracy 正确预测的样本数量
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy += accuracy
print('整体测试集上的loss是{}'.format(total_test_loss))
print('整体测试集上的正确率是{}'.format(total_accuracy/test_data_size))
writer.add_scalar('test_loss',total_test_loss,total_test_step)
writer.add_scalar('test_accuracy', total_accuracy, total_test_step)
total_test_step+=1
torch.save(tudui,'tudui_{}.pth'.format(i))
print('模型已保存')
writer.close()
# model.py
import torch
from torch import nn
# 3 搭建神经网络
class Tudui(nn.Module):
def __init__(self):
super().__init__()
self.model = nn.Sequential(
nn.Conv2d(3,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024,64),
nn.Linear(64, 10)
)
def forward(self,x):
x = self.model(x)
return x
if __name__ == '__main__':
tudui = Tudui()
# 验证一下输入输出尺寸
input = torch.ones((64,3,32,32))
output = tudui(input)
print(output.shape)
运行结果: