架构设计:流式处理与实时计算

引言

随着大数据技术的不断发展,流式处理和实时计算在各行各业中变得越来越重要。那么什么是流式处理呢?我们又该怎么使用它?流式处理允许我们对数据流进行实时分析和处理,而实时计算则使我们能够以低延迟和高吞吐量处理数据。本文将介绍流式处理和实时计算的架构设计,包括使用场景、Java代码示例以及在使用过程中需要注意的问题。

1. 概述

1.1 概念定义
  • 流式处理

    • 流式处理是一种连续处理数据流的方式,数据以流的形式持续进入系统,系统对数据流进行实时处理和分析,并产生实时结果或输出。
    • 流式处理通常涉及对无限数据集合进行处理,不断地处理新的数据输入,而不是一次性地处理静态数据集合。
  • 实时计算

    • 实时计算是一种即时处理数据的方式,数据进入系统后立即进行计算和分析,并产生实时结果或输出。
    • 实时计算通常要求在非常短的时间内完成计算和处理,以满足对数据及时性的要求。
1.2 特点
  • 流式处理的特点

    • 数据持续不断地进入系统,需要对数据流进行实时处理。
    • 数据处理通常是有状态的,需要维护和更新状态信息。
    • 数据处理结果通常是实时的,要求低延迟和高吞吐量。
  • 实时计算的特点

    • 数据需要立即进行处理和计算,以满足对数据的及时性要求。
    • 计算和处理通常需要在非常短的时间内完成,要求低延迟和高性能。
    • 结果通常是实时的,可以立即应用于业务场景中。

2. 流式处理架构设计

2.1 使用场景

流式处理和实时计算适用于许多不同的应用场景,下面是比较常用的场景:

  • 实时监控与警报:监控系统日志、网络流量等,及时发现异常并触发警报。
  • 实时分析:对实时数据进行分析,如实时推荐系统、广告点击率分析等。
  • 实时数据处理:实时处理传感器数据、交易数据等,支持实时决策和操作。
  • 实时数据聚合:将大量的实时数据聚合为汇总报表或统计信息。
2.2 Java代码示例 

Flink流式处理代码示例

Apache Flink 是一个流式处理框架,提供了丰富的流式处理功能和API。以下是一个使用 Apache Flink 进行流式处理的简单 Java 代码示例:

添加maven依赖

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-java</artifactId>
    <version>${flink.version}</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-streaming-java_2.12</artifactId>
    <version>${flink.version}</version>
</dependency>
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class FlinkStreamProcessingExample {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStream<String> text = env.socketTextStream("localhost", 9999);

        DataStream<Tuple2<String, Integer>> counts = text
                .flatMap(new Tokenizer())
                .keyBy(0)
                .sum(1);

        counts.print();

        env.execute("Flink Stream Processing Example");
    }

    public static final class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {
        @Override
        public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
            String[] words = value.split(" ");
            for (String word : words) {
                out.collect(new Tuple2<>(word, 1));
            }
        }
    }
}

Spark批处理代码示例

Apache Spark 是一个快速、通用、可扩展的大数据处理引擎,Spark 提供了丰富的功能和 API,包括批处理、交互式查询、流式处理和机器学习等。它的核心特性包括内存计算、容错性和高效的数据抽象等。下面用java代码演示如何使用 Spark 进行单词计数。

<dependencies>
    <!-- Spark 核心依赖 -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.12</artifactId>
        <version>3.2.0</version>
    </dependency>

    <!-- Spark SQL 依赖(如果需要使用 SQL 功能)-->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql_2.12</artifactId>
        <version>3.2.0</version>
    </dependency>
</dependencies>
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;

import java.util.Arrays;

public class WordCount {

    public static void main(String[] args) {
        // 创建 Spark 配置对象
        SparkConf conf = new SparkConf().setAppName("WordCount").setMaster("local");

        // 创建 Spark 上下文对象
        JavaSparkContext sc = new JavaSparkContext(conf);

        // 读取文本文件并创建 RDD
        JavaRDD<String> lines = sc.textFile("input.txt");

        // 将每行文本拆分为单词
        JavaRDD<String> words = lines.flatMap(line -> Arrays.asList(line.split(" ")).iterator());

        // 将单词转换为键值对,键为单词,值为1
        JavaRDD<String> pairs = words.mapToPair(word -> new Tuple2<>(word, 1));

        // 对键值对进行聚合操作,统计单词出现的次数
        JavaRDD<String> wordCounts = pairs.reduceByKey((x, y) -> x + y);

        // 打印结果
        wordCounts.foreach(wordCount -> System.out.println(wordCount._1 + ": " + wordCount._2));

        // 关闭 Spark 上下文对象
        sc.close();
    }
}

3. 框架介绍及对比

3.1. Apache Kafka Streams
  • 简介:Apache Kafka Streams 是一个用于构建实时流处理应用程序的库,它直接构建在 Apache Kafka 之上,并与 Kafka 集成紧密。特点

    • 轻量级,易于使用,直接与 Kafka 集成。
    • 提供了丰富的 API,支持状态管理、窗口操作等功能。
    • 可以与 Apache Kafka Connect、Kafka Producer 和 Kafka Consumer 无缝集成。
3.2. Apache Flink
  • 简介:Apache Flink 是一个分布式流处理框架,提供了高吞吐量、低延迟的流处理能力,同时支持批处理。

  • 特点

    • 支持事件时间处理、状态管理、容错性等特性。
    • 提供了丰富的算子和 API,支持丰富的流处理和批处理操作。
    • 支持灵活的窗口操作、流与表的集成等功能。
3.3. Apache Storm
  • 简介:Apache Storm 是一个分布式实时计算系统,用于处理大规模实时数据流。

  • 特点

    • 提供了高吞吐量、低延迟的实时数据处理能力。
    • 支持容错性、可扩展性等特性。
    • 提供了丰富的拓扑结构和可编程 API,支持复杂的实时数据处理流程。

3.4. Spark Streaming

  • 简介:Spark Streaming 是 Apache Spark 生态系统中的一个组件,提供了高级别的流处理抽象,使得用户可以使用 Spark 引擎来处理实时数据流。

  • 特点

    • 提供了与 Spark 集成的流处理 API,支持类似于批处理的编程模型。
    • 可以利用 Spark 引擎的内存计算和优化技术,实现高吞吐量和低延迟的流处理。
3.5. Apache Hadoop MapReduce
  • 简介:Apache Hadoop MapReduce 是一个分布式批处理框架,用于处理大规模数据集。虽然它不是专门用于流式处理和实时计算的框架,但也可以用于批处理的实时数据分析。

  • 特点

    • 支持分布式批处理任务的并行执行。
    • 可以处理大规模数据集,适用于离线数据分析和处理。
    • 对于实时计算场景,可能存在较高的延迟和较低的吞吐量。

下面是一个简单的表格,对这几个流式处理和实时计算框架进行了对比:

框架特点优点缺点
Apache Kafka Streams直接构建在 Kafka 之上,易于集成与 Kafka 集成紧密,提供了丰富的 API 和状态管理功能功能相对较简单,不如 Flink 灵活
Apache Flink高吞吐量、低延迟,支持事件时间处理等特性提供了丰富的 API 和算子,支持流处理和批处理操作部署和维护相对复杂,学习曲线较陡
Apache Storm高吞吐量、低延迟,支持复杂的实时处理流程可以处理大规模实时数据流,提供了丰富的可编程 API 和拓扑结构相对于 Flink 和 Spark Streaming 功能较为有限
Spark Streaming利用 Spark 引擎的内存计算和优化技术与 Spark 集成紧密,提供了高级别的流处理抽象,易于使用和集成延迟较高,不如 Flink 那样支持低延迟处理
Apache Hadoop MapReduce分布式批处理框架,适用于离线数据分析可以处理大规模数据集,适用于离线数据分析和处理不适用于流式处理和实时计算场景

各个框架都有其独特的特点和适用场景,选择合适的框架应根据具体业务需求、技术栈和团队实际情况进行评估和选择。

4. 注意事项

在设计实时计算架构时,需要考虑以下几个关键的注意事项:

  • 性能与延迟

    • 实时计算的一个重要指标是性能和延迟。需要确保实时计算系统能够在较短的时间内处理数据,以满足实时性的要求。为了达到较低的延迟,可以采用并行计算、内存计算等技术手段来优化性能。
  • 容错与可靠性

    • 实时计算系统需要具备良好的容错性和可靠性,以应对可能发生的故障或异常情况。为了保证数据处理的准确性,需要实现数据的持久化和恢复机制,并在系统崩溃时能够自动恢复工作状态。
  • 数据一致性

    • 实时计算系统需要保证处理的数据具有一致性,避免数据丢失或重复处理。在数据处理过程中,需要考虑如何处理数据的并发访问和并行计算,以确保数据的一致性和准确性。
  • 负载均衡

    • 实时计算系统需要能够有效地处理大量的数据流,并确保各个计算节点之间的负载均衡。需要考虑如何分配和调度任务,以最大化系统的吞吐量和性能。
  • 监控与调试

    • 实时计算系统需要建立完善的监控和调试机制,及时发现和解决问题。可以通过监控系统性能指标、日志记录和异常处理等方式来实现对系统运行状态的监控和分析,以及对异常情况的处理和调试。
  • 扩展性与灵活性

    • 实时计算系统需要具备良好的扩展性和灵活性,以应对不断增长的数据规模和变化的业务需求。需要考虑如何设计可扩展的架构和组件,以便随着业务的发展和数据量的增长进行水平扩展和垂直扩展。
  • 安全性

    • 实时计算系统需要具备良好的安全性,保护系统和数据免受恶意攻击和未经授权的访问。需要考虑如何实现数据加密、身份验证、访问控制等安全机制,以确保数据的保密性和完整性。

5. 结语 

在大数据领域,流式处理和实时计算是处理实时数据的关键技术,不同的框架则提供了各自独特的特点和优势。在选择合适的框架时,需要综合考虑业务需求、技术栈、团队技术水平以及系统规模等因素。无论选择哪种框架,都需要根据实际情况进行灵活应用,不断优化和改进,以实现更高效、更可靠的实时数据处理系统。

 

相关参考:

Flink vs. Spark:特点、区别和使用场景_spark和flink应用场景区别-CSDN博客

Kafka快速实战与基本原理详解-CSDN博客 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/410806.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Bert基础(四)--解码器(上)

1 理解解码器 假设我们想把英语句子I am good&#xff08;原句&#xff09;翻译成法语句子Je vais bien&#xff08;目标句&#xff09;。首先&#xff0c;将原句I am good送入编码器&#xff0c;使编码器学习原句&#xff0c;并计算特征值。在前文中&#xff0c;我们学习了编…

4.测试教程 - 用例篇

文章目录 1.测试用例的基本要素2.测试用例的给我们带来的好处3.测试用例的设计方法3.1基于需求进行测试用例的设计3.1.1功能需求测试分析3.1.2非功能需求测试分析 3.2具体的设计方法3.2.1等价类3.2.2边界值3.2.3错误猜测法3.2.4判定表3.2.5场景设计法3.2.6因果图3.2.7因果图的需…

c++:vector的相关oj题(136. 只出现一次的数字、118. 杨辉三角、26. 删除有序数组中的重复项、JZ39 数组中出现次数超过一半的数字)

文章目录 1. 136. 只出现一次的数字题目详情代码(直接来异或&#xff09;思路 2. 118. 杨辉三角题目详情代码1思路代码2思路2 3. 26. 删除有序数组中的重复项题目详情代码思路 4. JZ39 数组中出现次数超过一半的数字题目详情代码1&#xff08;暴力&#xff09;思路1代码2&#…

A Visual Guide to Mamba and State Space Models

用于语言建模的 Transformers 的替代方案 Transformer 架构一直是大型语言模型 &#xff08;LLMs&#xff09; 成功的主要组成部分。它已被用于当今几乎所有LLMs正在使用的产品&#xff0c;从 Mistral 等开源模型到 ChatGPT 等闭源模型。 为了进一步改进LLMs&#xff0c;开发…

【HarmonyOS】鸿蒙开发之Stage模型-基本概念——第4.1章

Stage模型-基本概念 名词解释 AbilityStage:应用组件的“舞台“ UIAbility:包含UI界面的应用组件&#xff0c;是系统调度的基本单元 WindowStage:组件内窗口的“舞台“ Window&#xff1a;用来绘制UI页面的窗口 HAP:Harmony Ability Package(鸿蒙能力类型的包) HSP:Harmony Sh…

【算法 - 动态规划】找零钱问题Ⅰ

在前面的动态规划系列文章中&#xff0c;关于如何对递归进行分析的四种基本模型都介绍完了&#xff0c;再来回顾一下&#xff1a; 从左到右模型 &#xff1a;arr[index ...] 从 index 之前的不用考虑&#xff0c;只考虑后面的该如何选择 。范围尝试模型 &#xff1a;思考 [L ,…

C++——二叉搜索树

二叉搜索树 二叉搜索树&#xff1a; 又为搜索二叉树&#xff0c;一般具有以下的性质 若它的左子树不为空&#xff0c;则左子树上所有的节点的值都小于父亲节点若它的右子树不为空&#xff0c;则右子树上所有的节点的值都大于父亲节点它的左右子树也都为二叉搜索树 二叉搜索树…

Vue前端实现一个本地消息队列(MQ), 让消息延迟消费或者做缓存

MQ功能实现的具体代码(TsMQ.ts)&#xff1a; import { v4 as uuidx } from uuid;import emitter from /utils/mittclass Message {// 过期时间&#xff0c;0表示马上就消费exp: number;// 消费标识&#xff0c;避免重复消费tag : string;// 消息体body : any;constructor( exp…

Docker基础篇(六) dockerfile体系结构语法

FROM&#xff1a;基础镜像&#xff0c;当前新镜像是基于哪个镜像的 MAINTAINER &#xff1a;镜像维护者的姓名和邮箱地址 RUN&#xff1a;容器构建时需要运行的命令 EXPOSE &#xff1a;当前容器对外暴露出的端口号 WORKDIR&#xff1a;指定在创建容器后&#xff0c;终端默认登…

python中的类与对象(1)

目录 一. 引子&#xff1a;模板 二. 面向过程与面向对象 &#xff08;1&#xff09;面向过程编程 &#xff08;2&#xff09;面向对象编程 三. 对象与类 &#xff08;1&#xff09;对象 &#xff08;2&#xff09;类 四. 面向对象程序设计的特点&#xff1a;封装&#…

daydayEXP: 支持自定义Poc文件的图形化漏洞利用工具

daydayEXP: 支持自定义Poc文件的图形化漏洞利用工具 基于java fx写的一款支持加载自定义poc文件的、可扩展的的图形化渗透测试框架。支持批量漏洞扫描、漏洞利用、结果导出等功能。 使用 经过测试,项目可在jdk8环境下正常使用。jdk11因为缺少一些必要的组件,所以jdk11版本工…

sqli-labs第46关

注&#xff1a;说明借鉴&#xff08;现阶段水平不够&#xff0c;只能靠借鉴来完成本次作业&#xff0c;若侵权&#xff0c;必删&#xff09; 基于Sqli-Labs靶场的SQL注入-46~53关_sqli-lab less46-CSDN博客 SQL-Labs46关order by注入姿势-CSDN博客 一、首先需要sql-labs的环…

计算机设计大赛 深度学习图像风格迁移

文章目录 0 前言1 VGG网络2 风格迁移3 内容损失4 风格损失5 主代码实现6 迁移模型实现7 效果展示8 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习图像风格迁移 - opencv python 该项目较为新颖&#xff0c;适合作为竞赛课题…

StringBuffer StringBuilder

String 为什么StringBuilder是线程不安全的&#xff1f;StringBuffer是线程安全的&#xff1f; - Jacian - 博客园 (cnblogs.com) StringBuilder 线程安全的可变字符学序列 速度快 StringBuffer 线程不安全的可变字符序列 创建StringBuilder对象 new StringBuilder&…

【Java程序员面试专栏 算法思维】二 高频面试算法题:二分查找

一轮的算法训练完成后,对相关的题目有了一个初步理解了,接下来进行专题训练,以下这些题目就是汇总的高频题目,本篇主要聊聊二分查找,包括基础二分,寻找目标值的左右边界,搜索旋转数组以及波峰,以及x的平方根问题,所以放到一篇Blog中集中练习 题目关键字解题思路时间空…

BlackWidow靶场

kali&#xff1a;192.168.223.128 主机发现 nmap -sP 192.168.223.0/24 目标IP:192.168.223.153 端口扫描 nmap -sV -p- -A 192.168.223.153 22/tcp open ssh OpenSSH 7.9p1 Debian 10deb10u2 (protocol 2.0) 80/tcp open http Apache httpd 2.4.38 ((Deb…

【C++】类与对象——友元,内部类,匿名对象

类与对象 1 友元1.1 概念&#xff1a;1.2 友元函数1.3 友元类 2 内部类概念&#xff1a;特性&#xff1a;举例&#xff1a; 3 匿名对象Thanks♪(&#xff65;ω&#xff65;)&#xff89;谢谢阅读&#xff01;&#xff01;&#xff01;下一篇文章见&#xff01;&#xff01;&am…

定制红酒:设计专属标签与包装,打造与众不同个性

在云仓酒庄洒派的定制红酒服务中&#xff0c;为消费者提供个性化、专属的标签与包装设计是提升红酒与众不同性和纪念价值的关键环节。通过巧妙的设计&#xff0c;消费者可以打造出与众不同的红酒&#xff0c;展现自己的个性与品味。 首先&#xff0c;标签设计是展现红酒个性的重…

Mysql 的高可用详解

Mysql 高可用 复制 复制是解决系统高可用的常见手段。其思路就是&#xff1a;不要把鸡蛋都放在一个篮子里。 复制解决的基本问题是让一台服务器的数据与其他服务器保持同步。一台主库的数据可以同步到多台备库上&#xff0c;备库本身也可以被配置成另外一台服务器的主库。主…

MYSQL--(1.存储引擎 *2.事务*)

一 存储引擎: 1.介绍 1>在数据库管理系统当中通过使用数据引擎来实现数据的增删改,查询 2>不同的存储引擎提供的有不同的存储机制,索引技巧等功能 MYSQL的核心,就是存储引擎 3>同样的,用户也可以根据自己的需要进行选择,更改自己需要…