Bert基础(四)--解码器(上)

1 理解解码器

假设我们想把英语句子I am good(原句)翻译成法语句子Je vais bien(目标句)。首先,将原句I am good送入编码器,使编码器学习原句,并计算特征值。在前文中,我们学习了编码器是如何计算原句的特征值的。然后,我们把从编码器求得的特征值送入解码器。解码器将特征值作为输入,并生成目标句Je vais bien,如下图所示。

Transformer的编码器和解码器
在编码器部分,我们了解到可以叠加N个编码器。同理,解码器也可以有N个叠加在一起。为简化说明,我们设定N=2。如图所示,一个解码器的输出会被作为输入传入下一个解码器。我们还可以看到,编码器将原句的特征值(编码器的输出)作为输入传给所有解码器,而非只给第一个解码器。因此,一个解码器(第一个除外)将有两个输入:一个是来自前一个解码器的输出,另一个是编码器输出的特征值。
在这里插入图片描述

2 工作步骤

接下来,我们学习解码器究竟是如何生成目标句的。当 t = 1 t=1 t=1时(t表示时间步),解码器的输入是<sos>,这表示句子的开始。解码器收到<sos>作为输入,生成目标句中的第一个词,即Je,如图所示。

在这里插入图片描述
t = 2 t=2 t=2时,解码器使用当前的输入和在上一步( t = 1 t=1 t=1)生成的单词,预测句子中的下一个单词。在本例中,解码器将<sos>和Je(来自上一步)作为输入,并试图生成目标句中的下一个单词,如图所示。
在这里插入图片描述
同理,可以推断出解码器在 t = 3 t=3 t=3时的预测结果。此时,解码器将<sos>、Je和vais(来自上一步)作为输入,并试图生成句子中的下一个单词,如图所示
在这里插入图片描述
在每一步中,解码器都将上一步新生成的单词与输入的词结合起来,并预测下一个单词。因此,在最后一步( t = 4 t=4 t=4),解码器将<sos>、Je、vais和bien作为输入,并试图生成句子中的下一个单词,如图所示。
在这里插入图片描述
从上图中可以看到,一旦生成表示句子结束的<eos>标记,就意味着解码器已经完成了对目标句的生成工作。

3 位置编码

在编码器部分,我们将输入转换为嵌入矩阵,并将位置编码添加到其中,然后将其作为输入送入编码器。同理,我们也不是将输入直接送入解码器,而是将其转换为嵌入矩阵,为其添加位置编码,然后再送入解码器。

如下图所示,假设在时间步 t = 2 t=2 t=2,我们将输入转换为嵌入(我们称之为嵌入值输出,因为这里计算的是解码器在以前的步骤中生成的词的嵌入),将位置编码加入其中,然后将其送入解码器。
在这里插入图片描述
接下来,让我们深入了解解码器的工作原理。一个解码器模块及其所有的组件如图:
在这里插入图片描述
从图中可以看到,解码器内部有3个子层。

  • 带掩码的多头注意力层
  • 多头注意力层
  • 前馈网络层

与编码器模块相似,解码器模块也有多头注意力层和前馈网络层,但多了带掩码的多头注意力层。现在,我们对解码器有了基本的认识。接下来,让我们先详细了解解码器的每个组成部分,然后从整体上了解它的工作原理。

4 带掩码的多头注意力层

以英法翻译任务为例,假设训练数据集样本如图所示
在这里插入图片描述
数据集由两部分组成:原句和目标句。在前面,我们学习了解码器在测试期间是如何在每个步骤中逐字预测目标句的。

在训练期间,由于有正确的目标句,解码器可以直接将整个目标句稍作修改作为输入。解码器将输入的<sos>作为第一个标记,并在每一步将下一个预测词与输入结合起来,以预测目标句,直到遇到<eos>标记为止。因此,我们只需将<sos>标记添加到目标句的开头,再将整体作为输入发送给解码器。

比如要把英语句子I am good转换成法语句子Je vais bien。我们只需在目标句的开头加上<sos>标记,并将<sos>Je vais bien作为输入发送给解码器。解码器将预测输出为Je vais bien<eos>,如图所示。
在这里插入图片描述
为什么我们需要输入整个目标句,让解码器预测位移后的目标句呢?下面来解答。

首先,我们不是将输入直接送入解码器,而是将其转换为嵌入矩阵(输出嵌入矩阵)并添加位置编码,然后再送入解码器。假设添加输出嵌入矩阵和位置编码后得到图所示的矩阵X。

在这里插入图片描述
然后,将矩阵X送入解码器。解码器中的第一层是带掩码的多头注意力层。这与编码器中的多头注意力层的工作原理相似,但有一点不同。

为了运行自注意力机制,我们需要创建三个新矩阵,即查询矩阵Q、键矩阵K和值矩阵V。由于使用多头注意力层,因此我们创建了h个查询矩阵、键矩阵和值矩阵。对于注意力头 i i i的查询矩阵 Q i Q_i Qi、键矩阵 K i K_i Ki和值矩阵 V i V_i Vi,可以通过将X分别乘以权重矩阵 W i Q , W i K , W i V W_i^Q, W_i^K, W_i^V WiQ,WiK,WiV而得。

下面,让我们看看带掩码的多头注意力层是如何工作的。假设传给解码器的输入句是<sos>Je vais bien。我们知道,自注意力机制将一个单词与句子中的所有单词联系起来,从而提取每个词的更多信息。但这里有一个小问题。在测试期间,解码器只将上一步生成的词作为输入。

比如,在测试期间,当 t = 2 t=2 t=2时,解码器的输入中只有[<sos>, Je],并没有任何其他词。因此,我们也需要以同样的方式来训练模型。模型的注意力机制应该只与该词之前的单词有关,而不是其后的单词。要做到这一点,我们可以掩盖后边所有还没有被模型预测的词。

比如,我们想预测与<sos>相邻的单词。在这种情况下,模型应该只看到<sos>,所以我们应该掩盖<sos>后边的所有词。再比如,我们想预测Je后边的词。在这种情况下,模型应该只看到Je之前的词,所以我们应该掩盖Je后边的所有词。其他行同理,如图所示。
在这里插入图片描述
像这样的掩码有助于自注意力机制只注意模型在测试期间可以使用的词。但我们究竟如何才能实现掩码呢?我们学习过对于一个注意力头 Z 1 Z_1 Z1的注意力矩阵[插图]的计算方法,公式如下。
Z i = s o f t m a x ( Q i ⋅ K i T d k ) V i Z_i = softmax(\frac{Q_i·K_i^T}{\sqrt{d_k}})V_i Zi=softmax(dk QiKiT)Vi

计算注意力矩阵的第1步是计算查询矩阵与键矩阵的点积。下图显示了点积结果。需要注意的是,这里使用的数值是随机的,只是为了方便理解。

在这里插入图片描述
第二步是将 Q i ⋅ K i T Q_i·K_i^T QiKiT矩阵除以键向量维度的平方根 d k \sqrt{d_k} dk 。假设下图是 Q i ⋅ K i T / d k Q_i·K_i^T/\sqrt{d_k} QiKiT/dk 的结果。
在这里插入图片描述
第3步,我们对上图所得的矩阵应用softmax函数,并将分值归一化。但在应用softmax函数之前,我们需要对数值进行掩码转换。以矩阵的第1行为例,为了预测<sos>后边的词,模型不应该知道<sos>右边的所有词(因为在测试时不会有这些词)。因此,我们可以用 − ∞ - \infty 掩盖<sos>右边的所有词,如图所示。
在这里插入图片描述
接下来,让我们看矩阵的第2行。为了预测Je后边的词,模型不应该知道Je右边的所有词(因为在测试时不会有这些词)。因此,我们可以用 − ∞ - \infty 掩盖Je右边的所有词,如图所示。
在这里插入图片描述
同理,我们可以用 − ∞ - \infty 掩盖vais右边的所有词,如图所示。
在这里插入图片描述
现在,我们可以将softmax函数应用于前面的矩阵,并将结果与值矩阵 V i V_i Vi相乘,得到最终的注意力矩阵 Z i Z_i Zi。同样,我们可以计算h个注意力矩阵,将它们串联起来,并将结果乘以新的权重矩阵 W 0 W_0 W0,即可得到最终的注意力矩阵M,如下所示
M = C o n c a t e n a t e ( Z 1 , Z 2 , … … , Z h ) W 0 M = Concatenate(Z_1, Z_2,……,Z_h)W_0 M=Concatenate(Z1,Z2,……,Zh)W0

最后,我们把注意力矩阵M送到解码器的下一个子层,也就是另一个多头注意力层。

待更。。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/410804.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

4.测试教程 - 用例篇

文章目录 1.测试用例的基本要素2.测试用例的给我们带来的好处3.测试用例的设计方法3.1基于需求进行测试用例的设计3.1.1功能需求测试分析3.1.2非功能需求测试分析 3.2具体的设计方法3.2.1等价类3.2.2边界值3.2.3错误猜测法3.2.4判定表3.2.5场景设计法3.2.6因果图3.2.7因果图的需…

c++:vector的相关oj题(136. 只出现一次的数字、118. 杨辉三角、26. 删除有序数组中的重复项、JZ39 数组中出现次数超过一半的数字)

文章目录 1. 136. 只出现一次的数字题目详情代码(直接来异或&#xff09;思路 2. 118. 杨辉三角题目详情代码1思路代码2思路2 3. 26. 删除有序数组中的重复项题目详情代码思路 4. JZ39 数组中出现次数超过一半的数字题目详情代码1&#xff08;暴力&#xff09;思路1代码2&#…

A Visual Guide to Mamba and State Space Models

用于语言建模的 Transformers 的替代方案 Transformer 架构一直是大型语言模型 &#xff08;LLMs&#xff09; 成功的主要组成部分。它已被用于当今几乎所有LLMs正在使用的产品&#xff0c;从 Mistral 等开源模型到 ChatGPT 等闭源模型。 为了进一步改进LLMs&#xff0c;开发…

【HarmonyOS】鸿蒙开发之Stage模型-基本概念——第4.1章

Stage模型-基本概念 名词解释 AbilityStage:应用组件的“舞台“ UIAbility:包含UI界面的应用组件&#xff0c;是系统调度的基本单元 WindowStage:组件内窗口的“舞台“ Window&#xff1a;用来绘制UI页面的窗口 HAP:Harmony Ability Package(鸿蒙能力类型的包) HSP:Harmony Sh…

【算法 - 动态规划】找零钱问题Ⅰ

在前面的动态规划系列文章中&#xff0c;关于如何对递归进行分析的四种基本模型都介绍完了&#xff0c;再来回顾一下&#xff1a; 从左到右模型 &#xff1a;arr[index ...] 从 index 之前的不用考虑&#xff0c;只考虑后面的该如何选择 。范围尝试模型 &#xff1a;思考 [L ,…

C++——二叉搜索树

二叉搜索树 二叉搜索树&#xff1a; 又为搜索二叉树&#xff0c;一般具有以下的性质 若它的左子树不为空&#xff0c;则左子树上所有的节点的值都小于父亲节点若它的右子树不为空&#xff0c;则右子树上所有的节点的值都大于父亲节点它的左右子树也都为二叉搜索树 二叉搜索树…

Vue前端实现一个本地消息队列(MQ), 让消息延迟消费或者做缓存

MQ功能实现的具体代码(TsMQ.ts)&#xff1a; import { v4 as uuidx } from uuid;import emitter from /utils/mittclass Message {// 过期时间&#xff0c;0表示马上就消费exp: number;// 消费标识&#xff0c;避免重复消费tag : string;// 消息体body : any;constructor( exp…

Docker基础篇(六) dockerfile体系结构语法

FROM&#xff1a;基础镜像&#xff0c;当前新镜像是基于哪个镜像的 MAINTAINER &#xff1a;镜像维护者的姓名和邮箱地址 RUN&#xff1a;容器构建时需要运行的命令 EXPOSE &#xff1a;当前容器对外暴露出的端口号 WORKDIR&#xff1a;指定在创建容器后&#xff0c;终端默认登…

python中的类与对象(1)

目录 一. 引子&#xff1a;模板 二. 面向过程与面向对象 &#xff08;1&#xff09;面向过程编程 &#xff08;2&#xff09;面向对象编程 三. 对象与类 &#xff08;1&#xff09;对象 &#xff08;2&#xff09;类 四. 面向对象程序设计的特点&#xff1a;封装&#…

daydayEXP: 支持自定义Poc文件的图形化漏洞利用工具

daydayEXP: 支持自定义Poc文件的图形化漏洞利用工具 基于java fx写的一款支持加载自定义poc文件的、可扩展的的图形化渗透测试框架。支持批量漏洞扫描、漏洞利用、结果导出等功能。 使用 经过测试,项目可在jdk8环境下正常使用。jdk11因为缺少一些必要的组件,所以jdk11版本工…

sqli-labs第46关

注&#xff1a;说明借鉴&#xff08;现阶段水平不够&#xff0c;只能靠借鉴来完成本次作业&#xff0c;若侵权&#xff0c;必删&#xff09; 基于Sqli-Labs靶场的SQL注入-46~53关_sqli-lab less46-CSDN博客 SQL-Labs46关order by注入姿势-CSDN博客 一、首先需要sql-labs的环…

计算机设计大赛 深度学习图像风格迁移

文章目录 0 前言1 VGG网络2 风格迁移3 内容损失4 风格损失5 主代码实现6 迁移模型实现7 效果展示8 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习图像风格迁移 - opencv python 该项目较为新颖&#xff0c;适合作为竞赛课题…

StringBuffer StringBuilder

String 为什么StringBuilder是线程不安全的&#xff1f;StringBuffer是线程安全的&#xff1f; - Jacian - 博客园 (cnblogs.com) StringBuilder 线程安全的可变字符学序列 速度快 StringBuffer 线程不安全的可变字符序列 创建StringBuilder对象 new StringBuilder&…

【Java程序员面试专栏 算法思维】二 高频面试算法题:二分查找

一轮的算法训练完成后,对相关的题目有了一个初步理解了,接下来进行专题训练,以下这些题目就是汇总的高频题目,本篇主要聊聊二分查找,包括基础二分,寻找目标值的左右边界,搜索旋转数组以及波峰,以及x的平方根问题,所以放到一篇Blog中集中练习 题目关键字解题思路时间空…

BlackWidow靶场

kali&#xff1a;192.168.223.128 主机发现 nmap -sP 192.168.223.0/24 目标IP:192.168.223.153 端口扫描 nmap -sV -p- -A 192.168.223.153 22/tcp open ssh OpenSSH 7.9p1 Debian 10deb10u2 (protocol 2.0) 80/tcp open http Apache httpd 2.4.38 ((Deb…

【C++】类与对象——友元,内部类,匿名对象

类与对象 1 友元1.1 概念&#xff1a;1.2 友元函数1.3 友元类 2 内部类概念&#xff1a;特性&#xff1a;举例&#xff1a; 3 匿名对象Thanks♪(&#xff65;ω&#xff65;)&#xff89;谢谢阅读&#xff01;&#xff01;&#xff01;下一篇文章见&#xff01;&#xff01;&am…

定制红酒:设计专属标签与包装,打造与众不同个性

在云仓酒庄洒派的定制红酒服务中&#xff0c;为消费者提供个性化、专属的标签与包装设计是提升红酒与众不同性和纪念价值的关键环节。通过巧妙的设计&#xff0c;消费者可以打造出与众不同的红酒&#xff0c;展现自己的个性与品味。 首先&#xff0c;标签设计是展现红酒个性的重…

Mysql 的高可用详解

Mysql 高可用 复制 复制是解决系统高可用的常见手段。其思路就是&#xff1a;不要把鸡蛋都放在一个篮子里。 复制解决的基本问题是让一台服务器的数据与其他服务器保持同步。一台主库的数据可以同步到多台备库上&#xff0c;备库本身也可以被配置成另外一台服务器的主库。主…

MYSQL--(1.存储引擎 *2.事务*)

一 存储引擎: 1.介绍 1>在数据库管理系统当中通过使用数据引擎来实现数据的增删改,查询 2>不同的存储引擎提供的有不同的存储机制,索引技巧等功能 MYSQL的核心,就是存储引擎 3>同样的,用户也可以根据自己的需要进行选择,更改自己需要…

用c# 自己封装的Modbus工具类库源码

前言 Modbus通讯协议在工控行业的应用是很多的&#xff0c;并且也是上位机开发的基本技能之一。相关的类库也很多也很好用。以前只负责用&#xff0c;对其并没有深入学习和了解。前段时间有点空就在这块挖了挖。想做到知其然还要知其所以然。所以就有了自己封装的Modbus工具类库…