二叉树与堆

目录

1.树概念及结构

1.1树的概念

1.2 树的相关概念

1.3 树的表示

1.4 树在实际中的运用(表示文件系统的目录树结构)

2.二叉树概念及结构

2.1概念

2.2现实中的二叉树:

2.3 特殊的二叉树:

2.4 二叉树的性质

2.5 二叉树的存储结构

3.二叉树的顺序结构及实现

3.1 二叉树的顺序结构

3.2 堆的概念及结构

3.3 堆的实现

3.2.1 堆向下调整算法

3.2.2堆的创建

3.2.3 建堆时间复杂度

3.2.4 堆的插入

3.2.5 堆的删除

3.2.6 堆的代码实现

3.4 堆的应用

3.4.1 堆排序

3.4.2 TOP-K问题

4.二叉树链式结构的实现

4.1 前置说明

4.2二叉树的遍历

4.2.1 前序、中序以及后序遍历

4.2.2 层序遍历

4.3 节点个数以及高度等

4.5 二叉树的创建和销毁



1.树概念及结构

1.1树的概念
 

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
有一个特殊的结点,称为根结点,根节点没有前驱结点
除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继

因此,树是递归定义的。



 


注意:树形结构中,子树之间不能有交集,否则就不是树形结构


1.2 树的相关概念
 

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6


叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点


非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点


双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点


孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点


兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6


节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4


堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点


节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先


子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙


森林:由m(m>0)棵互不相交的树的集合称为森林
 


1.3 树的表示
 

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
 

typedef int DataType;
struct Node
{
        struct Node* _firstChild1; // 第一个孩子结点
        struct Node* _pNextBrother; // 指向其下一个兄弟结点
        DataType _data; // 结点中的数据域
};


1.4 树在实际中的运用(表示文件系统的目录树结构)
 


2.二叉树概念及结构
 

2.1概念

一棵二叉树是结点的一个有限集合,该集合:
        1. 或者为空
        2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

从上图可以看出:

        1. 二叉树不存在度大于2的结点
        2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
        注意:对于任意的二叉树都是由以下几种情况复合而成的:


2.2现实中的二叉树:


2.3 特殊的二叉树:
 

        1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉  树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。


        2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树


2.4 二叉树的性质
 

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 个结点.


2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 .


3. 对任何一棵二叉树, 如果度为0其叶结点个数为 , 度为2的分支结点个数为 ,则有 = +1


4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= . (ps: 是log以2
为底,n+1为对数)


5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

        1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
        2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
        3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子


2.5 二叉树的存储结构
 

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
 

1. 顺序存储


        顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

2. 链式存储


        二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,如红黑树等会用到三叉链。

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
        struct BinTreeNode* _pLeft; // 指向当前节点左孩子
        struct BinTreeNode* _pRight; // 指向当前节点右孩子
        BTDataType _data; // 当前节点值域
}


// 三叉链
struct BinaryTreeNode
{
        struct BinTreeNode* _pParent; // 指向当前节点的双亲
        struct BinTreeNode* _pLeft; // 指向当前节点左孩子
        struct BinTreeNode* _pRight; // 指向当前节点右孩子
        BTDataType _data; // 当前节点值域
};


3.二叉树的顺序结构及实现
 

3.1 二叉树的顺序结构
 

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。


3.2 堆的概念及结构
 


3.3 堆的实现
 

3.2.1 堆向下调整算法

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

int array[] = {27,15,19,18,28,34,65,49,25,37};


3.2.2堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

int a[] = {1,5,3,8,7,6};


3.2.3 建堆时间复杂度
 

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):

因此:建堆的时间复杂度为O(N)。


3.2.4 堆的插入

先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。



3.2.5 堆的删除
 

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。


3.2.6 堆的代码实现
 

typedef int HPDataType;
typedef struct Heap
{
        HPDataType* _a;
        int _size;
        int _capacity;
}Heap;


// 堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n);


// 堆的销毁
void HeapDestory(Heap* hp);


// 堆的插入
void HeapPush(Heap* hp, HPDataType x);


// 堆的删除
void HeapPop(Heap* hp);


// 取堆顶的数据
HPDataType HeapTop(Heap* hp);


// 堆的数据个数
int HeapSize(Heap* hp);


// 堆的判空
int HeapEmpty(Heap* hp);


3.4 堆的应用
 

3.4.1 堆排序
 

堆排序即利用堆的思想来进行排序,总共分为两个步骤:


1. 建堆
        升序:建大堆
        降序:建小堆


2. 利用堆删除思想来进行排序
        建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序


3.4.2 TOP-K问题


TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
        比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
        对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排  序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,

基本思路如下:


1. 用数据集合中前K个元素来建堆
        前k个最大的元素,则建小堆
        前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。
 

void PrintTopK(int* a, int n, int k)
{
        // 1. 建堆--用a中前k个元素建堆
        // 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换
}
void TestTopk()
{
        int n = 10000;
        int* a = (int*)malloc(sizeof(int)*n);
        srand(time(0));
for (size_t i = 0; i < n; ++i)
{
        a[i] = rand() % 1000000;
}
        a[5] = 1000000 + 1;
        a[1231] = 1000000 + 2;
        a[531] = 1000000 + 3;
        a[5121] = 1000000 + 4;
        a[115] = 1000000 + 5;
        a[2335] = 1000000 + 6;
        a[9999] = 1000000 + 7;
        a[76] = 1000000 + 8;
        a[423] = 1000000 + 9;
        a[3144] = 1000000 + 10;
        PrintTopK(a, n, 10);
}


4.二叉树链式结构的实现
 

4.1 前置说明
 

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构掌握还不够深入,为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。

typedef int BTDataType;
typedef struct BinaryTreeNode
{
        BTDataType _data;
        struct BinaryTreeNode* _left;
        struct BinaryTreeNode* _right;
}BTNode;


BTNode* CreatBinaryTree()
{
        BTNode* node1 = BuyNode(1);
        BTNode* node2 = BuyNode(2);
        BTNode* node3 = BuyNode(3);

        BTNode* node4 = BuyNode(4);
        BTNode* node5 = BuyNode(5);
        BTNode* node6 = BuyNode(6);


        node1->_left = node2;
        node1->_right = node4;
        node2->_left = node3;
        node4->_left = node5;
        node4->_right = node6;
        return node1;
}

注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。


再看二叉树基本操作前,再回顾下二叉树的概念,二叉树是:


        1. 空树
        2. 非空:根节点,根节点的左子树、根节点的右子树组成的

从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。
 


4.2二叉树的遍历
 

4.2.1 前序、中序以及后序遍历
 

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:


1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。


2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。


3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
 

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

// 二叉树前序遍历
void PreOrder(BTNode* root);
// 二叉树中序遍历
void InOrder(BTNode* root);
// 二叉树后序遍历
void PostOrder(BTNode* root);

下面主要分析前序递归遍历,中序与后序图解类似,同学们可自己动手绘制。


前序遍历递归图解:
 

前序遍历结果:1 2 3 4 5 6
中序遍历结果:3 2 1 5 4 6
后序遍历结果:3 2 5 6 4 1


4.2.2 层序遍历
 

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

// 层序遍历
void LevelOrder(BTNode* root);


4.3 节点个数以及高度等
 

// 二叉树节点个数
int BinaryTreeSize(BTNode* root);


// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root);


// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k);


// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x);


4.5 二叉树的创建和销毁
 

// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi);


// 二叉树销毁
void BinaryTreeDestory(BTNode** root);


// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root);
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/410071.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

kafka生产者

1.原理 2.普通异步发送 引入pom&#xff1a; <dependencies><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>3.0.0</version></dependency><dependency><g…

【信息系统项目管理师】--【信息技术发展】--【现代化创新发展】--【大数据】

文章目录 第二章 信息技术发展2.2 新一代信息技术及应用2.2.3 大数据1.技术基础2.关键技术3.应用和发展 第二章 信息技术发展 信息技术是在信息科学的基本原理和方法下&#xff0c;获取信息、处理信息、传输信息和使用信息的应用技术总称。从信息技术的发展过程来看&#xff0c…

python常用文件操作

1.文件夹创建&#xff0c;删除&#xff0c;重命名&#xff0c;路径连接&#xff0c;文件打开&#xff0c;关闭读写 #文件夹创建 path ./test newpath "./new" #判断文件夹是否存在 ret os.path.exists(path) if ret:pass else:#创建文件夹os.mkdir(path)#文件夹重…

牛客周赛 Round 34 解题报告 | 珂学家 | 构造思维 + 置换环

前言 整体评价 好绝望的牛客周赛&#xff0c;彻底暴露了CF菜菜的本质&#xff0c;F题没思路&#xff0c;G题用置换环骗了50%, 这大概是唯一的亮点了。 A. 小红的字符串生成 思路: 枚举 a,b两字符在相等情况下比较特殊 a, b input().split() if a b:print (2)print (a)pri…

关系型数据库事务的四性ACID:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durability)

关系型数据库事务的四性ACID:原子性&#xff08;Atomicity&#xff09;、一致性&#xff08;Consistency&#xff09;、隔离性&#xff08;Isolation&#xff09;和持久性&#xff08;Durability&#xff09; 事务的四性通常指的是数据库事务的ACID属性&#xff0c;包括原子性&…

Find My小风扇|苹果Find My技术与小风扇结合,智能防丢,全球定位

电风扇在我们的日常生活中也是经常会使用到的家电产品&#xff0c;尤其是在炎炎的夏日&#xff0c;风扇能给我们吹来清凉的凉风&#xff0c;如今随身携带的小风扇成为人们出门的必备物品&#xff0c;由于体积小方便经常会被人遗忘在某个地方导致丢失。 在智能化加持下&#x…

官方必读!脚本附赠技术教程系列:麒麟天御安全域管平台V4.0.0服务端云底座部署(2)

1.部署须知 1.1.部署说明 执行本部署操作文档&#xff0c;请用户知悉如下内容后再操作&#xff1a; 仅限用于部署麒麟容器云底座&#xff0c;部署前请准备好相应的物料&#xff1b;部署前请提前准备好集群LICENSE&#xff0c;用于激活容器云底座&#xff08;可使用临时版用于测…

vscode使用restClient实现各种http请求

vscode使用restClient实现各种http请求 一&#xff0c;安装插件 首先&#xff0c;我们要在vscode的扩展中&#xff0c;搜索rest Client&#xff0c;然后安装它&#xff0c;这里我已经安装过了。 安装后&#xff0c;我们就可以使用rest client插件进行http各种操作了。 二&…

动态规划的时间复杂度优化

作者推荐 视频算法专题 本文涉及知识点 动态规划汇总 优化动态规划的时间复杂度&#xff0c;主要有如下几种&#xff1a; 一&#xff0c;不同的状态表示。 比如&#xff1a;n个人&#xff0c;m顶帽子。 第一种方式&#xff1a;dp[i][mask] ,i表示前i个人已经选择帽子&…

听李国武老师讲帕累托图

一、帕累托图是什么&#xff1f; 帕累托图是一种特殊的图表&#xff0c;它以二维的方式展示数据&#xff0c;通过将数据按照两个特定的维度进行分类和排序&#xff0c;帮助我们更好地理解和分析数据。 二、如何使用帕累托图&#xff1f; 确定两个分类维度&#xff1a;首先&am…

力扣--动态规划1014.最佳观光组合

思路分析: 初始化左侧景点的评分为第一个景点的评分&#xff0c;最终结果为0。从第二个景点开始遍历数组。对于每个景点&#xff0c;计算当前观光组合的得分&#xff0c;即当前景点的评分 左侧景点的评分 - 两者之间的距离。更新最终结果为当前得分和之前结果的较大值。更新左…

数据结构:链表的冒泡排序

法一&#xff1a;修改指针指向 //法二 void maopao_link(link_p H){if(HNULL){printf("头节点为空\n");return;}if(link_empty(H)){printf("链表为空\n");return;}link_p tailNULL;while(H->next->next!tail){link_p pH;link_p qH->next;while(q…

探索创意的无尽宇宙——Photoshop 2020,你的视觉魔法棒

在数字艺术的广阔天地中&#xff0c;Photoshop 2020无疑是一颗璀璨的明星。这款由Adobe公司精心打造的图像处理软件&#xff0c;自推出以来&#xff0c;便以其强大的功能和卓越的性能&#xff0c;赢得了全球数百万设计师、摄影师和爱好者的青睐。无论是Mac还是Windows系统&…

UE引擎, 在create blueprint from selection中, 点击select卡死问题处理

1. bug场景 在创建子类时点击select&#xff0c; ue会直接冻结无法点击 2. 解决方案 点击“Edit” -> “Edit Preference” 选择Asset Editor Open Location的选项从默认改为“Main Window”即可解决问题 3. 问题产生的原因 原因是UE的弹窗在拓展显示器或者笔记本显示…

DIY制作耳机壳时使用哪一种胶粘剂性价比最高?

选择性价比最高的胶粘剂需要根据具体的应用场景和需求来确定。不同的胶粘剂有不同的特点和使用范围&#xff0c;因此其性价比也不同。 一般来说&#xff1a; 如果需要快速粘合、透明度高、粘合力强的场景&#xff0c;可以选择UV树脂胶&#xff1b; 如果需要高温、高强度的粘合…

复合式统计图绘制方法(1)

复合式统计图绘制方法&#xff08;1&#xff09; 常用的统计图有条形图、柱形图、折线图、曲线图、饼图、环形图、扇形图。 前几类图比较容易绘制&#xff0c;饼图环形图绘制较难。 在统计图的应用方面&#xff0c;有时候有两个关联的统计学的样本值要用统计图来表达&#xff0…

Webserver解决segmentation fault(core dump)段错问问题

前言 在完成了整个项目后&#xff0c;我用make命令编译了server&#xff0c;当我运行./server文件时&#xff0c;出现了段错误 在大量的代码中找出错因并不是一件容易的事&#xff0c;尤其是对新手程序员来说。而寻找bug的过程就像是侦探调查线索追查凶手一样&#xff0c;我们…

GO语言基础总结

多态&#xff1a; 定义一个父类的指针&#xff08;接口&#xff09;&#xff0c;然后把指针指向子类的实例&#xff0c;再调用这个父类的指针&#xff0c;然后子类的方法被调用了&#xff0c;这就是多态现象。 Golang 高阶 goroutine 。。。。。 channel channel的定义 …

【JVM】聊聊JVM生产环境常见的OOM问题

对于JVM来说&#xff0c;因为划分有固定的区域来执行字节码文件&#xff0c;无外乎&#xff0c;出问题的&#xff0c;也就是按照对应分分区会有常见的OOM问题。 栈 对于栈来说&#xff0c;栈的主要作用就是用于方法的执行&#xff0c;方法调用入栈、方法调出出栈。但是如果我…

LeetCode_Java_动态规划系列(1)(题目+思路+代码)

目录 斐波那契类型 746.使用最小花费爬楼梯 矩阵 120. 三角形最小路径和 斐波那契类型 746.使用最小花费爬楼梯 给你一个整数数组 cost &#xff0c;其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用&#xff0c;即可选择向上爬一个或者两个台阶。…