算法沉淀——动态规划之简单多状态 dp 问题(上)(leetcode真题剖析)

在这里插入图片描述

算法沉淀——动态规划之简单多状态 dp 问题上

  • 01.按摩师
  • 02.打家劫舍 II
  • 03.删除并获得点数
  • 04.粉刷房子

01.按摩师

题目链接:https://leetcode.cn/problems/the-masseuse-lcci/

一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。

注意:本题相对原题稍作改动

示例 1

输入: [1,2,3,1]

输出: 4

解释:选择 1 号预约和 3 号预约,总时长 = 1 + 3 = 4。

示例 2

输入: [2,7,9,3,1]

输出: 12

解释: 选择 1 号预约、 3 号预约和 5 号预约,总时长 = 2 + 9 + 1 = 12。

示例 3

输入: [2,1,4,5,3,1,1,3]

输出: 12

解释: 选择 1 号预约、 3 号预约、 5 号预约和 8 号预约,总时长 = 2 + 4 + 3 + 3 = 12。

思路

  1. 状态表达: 我们定义两个状态数组,fg

    • f[i] 表示:选择到位置 i 时,此时的最长预约时长,且 nums[i] 必须选。
    • g[i] 表示:选择到位置 i 时,此时的最长预约时长,nums[i] 不选。
  2. 状态转移方程: 对于 f[i]

    • 如果 nums[i] 必须选,那么我们仅需知道 i - 1 位置在不选的情况下的最长预约时长,然后加上 nums[i] 即可,因此 f[i] = g[i - 1] + nums[i]

    对于 g[i]

    • 如果 nums[i] 不选,那么 i - 1 位置上选或者不选都可以。因此,我们需要知道 i - 1 位置上选或者不选两种情况下的最长时长,因此 g[i] = max(f[i - 1], g[i - 1])
  3. 初始化: 由于这道题的初始化比较简单,无需加辅助节点,仅需初始化 f[0] = nums[0], g[0] = 0 即可。

  4. 填表顺序: 根据状态转移方程,从左往右,两个表一起填。

  5. 返回值: 根据状态表达,我们应该返回 max(f[n - 1], g[n - 1])

代码

class Solution {
public:
    int massage(vector<int>& nums) {
        int n = nums.size();
        if(n==0) return 0;
        vector<int> f(n);
        vector<int> g(n);
        f[0] = nums[0];

        for (int i = 1; i < n; ++i)
        {
	            f[i] = g[i - 1] + nums[i];
            	g[i] = max(f[i - 1], g[i - 1]);
        }

        return max(g[n - 1], f[n - 1]);
    }
};

02.打家劫舍 II

题目链接:https://leetcode.cn/problems/house-robber-ii/

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

示例 1:

输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例 2:

输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

示例 3:

输入:nums = [1,2,3]
输出:3

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 1000

思路

将环形的打家劫舍问题转化为两个单排的问题。具体来说,你分别考虑两种情况:

a. 偷第一个房屋的情况: 在这种情况下,由于首尾相连,你不能偷最后一个房子,因此偷窃范围是 [0, n - 2]。你可以使用之前解决「打家劫舍I」的动态规划方法来找到在这个范围内的最大金额,得到的结果是 x

b. 不偷第一个房屋的情况: 在这种情况下,你可以偷最后一个房子,因此偷窃范围是 [1, n - 1]。同样,使用相同的动态规划方法得到在这个范围内的最大金额,得到的结果是 y

最终的答案就是这两种情况下的最大值,即 max(x, y)

代码

class Solution {
public:
    int rob(vector<int>& nums) {
        int n=nums.size();
        return max(nums[0]+rob1(nums,2,n-2),rob1(nums,1,n-1));
    }

    int rob1(vector<int>& nums,int start,int end){
        if(start>end) return 0;

        int n=nums.size();
        vector<int> f(n);
        vector<int> g(n);

        f[start]=nums[start];
        for(int i=start+1;i<=end;i++){
            f[i]=g[i-1]+nums[i];
            g[i]=max(g[i-1],f[i-1]);
        }

        return max(g[end],f[end]);
    }
};

03.删除并获得点数

题目链接:https://leetcode.cn/problems/delete-and-earn/

给你一个整数数组 nums ,你可以对它进行一些操作。

每次操作中,选择任意一个 nums[i] ,删除它并获得 nums[i] 的点数。之后,你必须删除 所有 等于 nums[i] - 1nums[i] + 1 的元素。

开始你拥有 0 个点数。返回你能通过这些操作获得的最大点数。

示例 1:

输入:nums = [3,4,2]
输出:6
解释:
删除 4 获得 4 个点数,因此 3 也被删除。
之后,删除 2 获得 2 个点数。总共获得 6 个点数。

示例 2:

输入:nums = [2,2,3,3,3,4]
输出:9
解释:
删除 3 获得 3 个点数,接着要删除两个 2 和 4 。
之后,再次删除 3 获得 3 个点数,再次删除 3 获得 3 个点数。
总共获得 9 个点数。

提示:

  • 1 <= nums.length <= 2 * 104
  • 1 <= nums[i] <= 104

思路

其实这道题可以看作是「打家劫舍I」问题的变体。通过将每个数字的出现的和记录在 hash 数组中,然后在 hash 数组上应用「打家劫舍」的思路,你能够有效地解决这个问题。

具体来说,可以创建一个大小为 10001(根据题目的数据范围)的 hash 数组,将 nums 数组中的每个元素 x 累加到 hash 数组下标为 x 的位置上。然后就可以使用「打家劫舍I」问题的动态规划方法,从 hash 数组中找到不相邻的元素的最大和。

代码

class Solution {
public:
    int deleteAndEarn(vector<int>& nums) {
        int hash[10001] = {0};
        for(int& x:nums) hash[x]+=x;

        vector<int> f(10001);
        vector<int> g(10001);

        for(int i=1;i<10001;++i){
            f[i]=g[i-1]+hash[i];
            g[i]=max(g[i-1],f[i-1]);
        }

        return max(f[10000],g[10000]);
    }
};

04.粉刷房子

题目链接:https://leetcode.cn/problems/JEj789/

假如有一排房子,共 n 个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。

当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个 n x 3 的正整数矩阵 costs 来表示的。

例如,costs[0][0] 表示第 0 号房子粉刷成红色的成本花费;costs[1][2] 表示第 1 号房子粉刷成绿色的花费,以此类推。

请计算出粉刷完所有房子最少的花费成本。

示例 1:

输入: costs = [[17,2,17],[16,16,5],[14,3,19]]
输出: 10
解释: 将 0 号房子粉刷成蓝色,1 号房子粉刷成绿色,2 号房子粉刷成蓝色。
     最少花费: 2 + 5 + 3 = 10。

示例 2:

输入: costs = [[7,6,2]]
输出: 2 

提示:

  • costs.length == n
  • costs[i].length == 3
  • 1 <= n <= 100
  • 1 <= costs[i][j] <= 20

思路

  1. 状态表表示:

    • 在处理线性动态规划时,采用“经验+题目要求”方式定义状态表,选择以某个位置为结尾的方式。
    • 在该位置结束时,定义三种颜色选择的状态表,分别表示最后一个位置选择“红色”、“蓝色”和“绿色”的最小花费。
  2. 状态转移方程:

    • 分析三个状态的转移方程,以 dp[i][0] 为例:

      • 若选择在位置 i 粉刷“红色”,考虑前一个位置“蓝色”和“绿色”两种情况的最小花费,再加上当前位置的花费。
      • 类似地,对于 dp[i][1] dp[i][2],分别考虑选择“蓝色”和“绿色”时的最小花费。

      于是状态方程为:

      dp[i][0]=min(dp[i-1][1],dp[i-1][2])+costs[i-1][0];
      dp[i][1]=min(dp[i-1][0],dp[i-1][2])+costs[i-1][1];
      dp[i][2]=min(dp[i-1][0],dp[i-1][1])+costs[i-1][2];
      
  3. 初始化:

    • 添加一个辅助节点,将其初始化为 0,确保后续填表的正确性。
    • 注意辅助节点的值要符合题目的要求。
  4. 填表顺序:

    • 根据状态转移方程,从左往右同时填充三个表格。
  5. 返回值:

    • 返回最后一个位置三种颜色选择的最小值,即 min(dp[n][0], min(dp[n][1], dp[n][2]))

代码

class Solution {
public:
    int minCost(vector<vector<int>>& costs) {
        int n=costs.size();
        vector<vector<int>> dp(n+1,vector<int>(3));

        for(int i=1;i<=n;i++){
            dp[i][0]=min(dp[i-1][1],dp[i-1][2])+costs[i-1][0];
            dp[i][1]=min(dp[i-1][0],dp[i-1][2])+costs[i-1][1];
            dp[i][2]=min(dp[i-1][0],dp[i-1][1])+costs[i-1][2];
        }

        return min(dp[n][0],min(dp[n][1],dp[n][2]));
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/409207.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Unity】提示No valid Unity Editor liscense found.Please active your liscense.

有两个软件&#xff0c;如果只有一个&#xff0c;点黑的不会有效果、、、、&#xff08;楼主是这个原因&#xff0c;可以对号入座一下&#xff09; 简而言之&#xff0c;就是去下载Unity Hub&#xff0c;再里面激活管理通行证 问题情境&#xff1a; 点击unity出现以下弹窗&a…

防御保护--入侵防御系统IPS

目录 DFI和DPI技术 --- 深度检测技术 入侵防御&#xff08;IPS&#xff09; 签名 入侵防御策略的配置 内容安全&#xff1a;攻击可能只是一个点&#xff0c;防御需要全方面进行 IAE引擎 DFI和DPI技术 --- 深度检测技术 DPI--深度包检测技术--主要针对完整的数据包&#xff0…

操作符详解3

✨✨ 欢迎大家来到莉莉的博文✨✨ &#x1f388;&#x1f388;养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 前面我们已经讲过算术操作符、赋值操作符、逻辑操作符、条件操作符和部分的单目操作 符&#xff0c;今天继续介绍一部分。 目录 1.操作符的分类 2…

typescript 类型声明文件

typescript 类型声明文件概述 在今天几乎所有的JavaScript应用都会引入许多第三方库来完成任务需求。这些第三方库不管是否是用TS编写的&#xff0c;最终都要编译成JS代码&#xff0c;才能发布给开发者使用。6我们知道是TS提供了类型&#xff0c;才有了代码提示和类型保护等机…

K8S—集群调度

目录 前言 一 List-Watch 1.1 list-watch概述 1.2 list-watch工作机制 二 集群调度 2.1 调度过程 2.2 Predicate 和 Priorities 的常见算法和优先级选项 2.3 调度方式 三 亲和性 3.1 节点亲和性 3.2 Pod 亲和性 3.3 键值运算关系 3.4 Pod亲和性与反亲和性 3.5 示例…

《高质量的C/C++编程规范》学习

目录 一、编程规范基础知识 1、头文件 2、程序的板式风格 3、命名规则 二、表达式和基本语句 1、运算符的优先级 2、复合表达式 3、if语句 4、循环语句的效率 5、for循环语句 6、switch语句 三、常量 1、#define和const比较 2、常量定义规则 四、函数设计 1、参…

Python及Pycharm专业版下载安装教程(Python 3.11版)附JetBrains学生认证教程

目录 一、Python下载及安装1、Python下载2、Python安装3、验证是否安装成功 二、PyCharm下载及安装1、PyCharm下载2、PyCharm安装3、激活PyCharm 三、JetBrains学生认证 本篇主要介绍Python和PyCharm专业版的下载及安装方式&#xff0c;以及通过两种方式进行JetBrains学生认证。…

Meta AI | 指令回译:如何从大量无标签文档挖掘高质量大模型训练数据?

Meta AI | 指令回译&#xff1a;如何从大量无标签文档挖掘高质量大模型训练数据&#xff1f; 文章来自Meta AI&#xff0c;self-Alignment with Instruction Backtranslation[1]&#xff1a;通过指令反向翻译进行自对准。 一种从互联网大量无标签数据中挖掘高质量的指令遵循数据…

vscode 设置打开中断的默认工作目录/路径

vscode 设置打开终端的默认工作目录/路径** 文章目录 vscode 设置打开终端的默认工作目录/路径**打开vscode&#xff0c;打开设置UI 或是设置JSON文件&#xff0c;找到相关设置项方式1&#xff1a;通过打开settings.json的UI界面 设置:方式2&#xff1a;通过打开设置settings.j…

机器学习基础(六)TensorFlow与PyTorch

导语&#xff1a;上一节我们详细探索了监督与非监督学习的结合使用。&#xff0c;详情可见&#xff1a; 机器学习基础&#xff08;五&#xff09;监督与非监督学习的结合-CSDN博客文章浏览阅读4次。将监督学习和非监督学习结合起来&#xff0c;就像将两种不同的艺术形式融合&a…

[树形DP] 树的最大独立集

题目 这个挺简单的&#xff0c;注意状态转移时&#xff0c;如果选这个点&#xff0c;那么它的子结点状态应该为不选&#xff0c;如果这个点的状态是不选&#xff0c;那么可以在它的子结点里选择&#xff1a;选/不选两个状态&#xff0c;所以最后结果是max挑选。 #include<b…

python自动化管理和zabbix监控网络设备(有线网络配置部分)

目录 一、拓扑图 二、core-sw1 三、core-sw2 四、sum-sw1 五、sum-sw2 一、拓扑图 二、core-sw1 sys sysname core-sw1 vlan batch 10 20 30 40 50 60 100 vlan batch 200 210 220 230 240 250 stp region-configuration region-name huawei revision-level 1 instance…

vue2和vue3 setup beforecreate create生命周期时间比较

创建一个vue程序&#xff0c;vue3可以兼容Vue2的写法&#xff0c;很流畅完全没问题 写了一个vue3组件 <template><div></div> </template><script lang"ts"> import {onMounted} from vue export default{data(){return {}},beforeCr…

深入理解JS的执行上下文、词法作用域和闭包(中)

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

现在学Oracle是49年入国军么?

今天周末&#xff0c;不聊技术&#xff0c;聊聊大家说的最多的一个话题 先说明一下&#xff0c;防止挨喷&#x1f606; 本人并不是职业dba&#xff0c;对数据库就是爱好&#xff0c;偶尔兼职&#xff0c;以下仅个人观点分析&#xff0c;如有不同观点请轻喷&#xff0c;哈哈&…

万字长文带你由浅入深夯实ARM汇编基础——汇编指令及寻址方式最全梳理(附示例)!

《嵌入式工程师自我修养/C语言》系列——由浅入深夯实ARM汇编基础&#xff0c;汇编指令及寻址方式梳理&#xff08;附示例&#xff09;&#xff01; 一、引言二、ARM汇编语言2.1 ARM汇编的特点2.2 ARM指令集格式标准2.2.1 机器指令格式2.2.2 汇编指令格式 三、ARM寻址方式3.1 立…

【Android安全】Windows 环境下载 AOSP 源码

准备环境 安装 git 安装 Python 硬盘剩余容量最好大于 100G 打开 Git Bash&#xff0c;用 git 克隆源代码仓库 git clone https://android.googlesource.com/platform/manifest.git //没有梯子使用清华源 git clone https://aosp.tuna.tsinghua.edu.cn/platform/manifest.git…

174基于matlab的雷达数字信号处理

基于matlab的雷达数字信号处理。该程序具备对雷达目标回波的处理能力&#xff0c;能够从噪声中将目标检测出来&#xff0c;并提取目标的距离、速度、角度信息。有相应的试验文档。程序已调通&#xff0c;可直接运行。 174 雷达数字信号处理 目标检测出来 (xiaohongshu.com)

半导体物理基础-笔记(续)

源内容参考&#xff1a;https://www.bilibili.com/video/BV11U4y1k7zn/?spm_id_from333.337.search-card.all.click&vd_source61654d4a6e8d7941436149dd99026962 掺杂半导体的费米能级与温度及杂质浓度的关系图 在温度一定的条件下&#xff0c;施主杂质浓度越高&#xff0…

字符串(算法竞赛)--字典树Trie与最大异或对

1、B站视频链接&#xff1a;F06 字典树(Trie)_哔哩哔哩_bilibili 题目链接&#xff1a;【模板】字典树 - 洛谷 #include <bits/stdc.h> using namespace std; const int N100010; int n; char s[N]; int ch[N][26];//ch[0][2]1表示0号节点通过c边走到了节点1 int cnt[…