自定义神经网络二之模型训练推理

文章目录

    • 前言
    • 模型概念
      • 模型是什么?
      • 模型参数有哪些
        • 神经网络参数案例
      • 为什么要生成模型
      • 模型的大小
      • 什么是大模型
    • 模型的训练和推理
      • 模型训练
        • 训练概念
        • 训练过程
        • 训练过程中的一些概念
      • 模型推理
        • 推理概念
        • 推理过程
    • 总结

前言

自定义神经网络一之Tensor和神经网络

通过上一篇文章,我们大概了解了神经网络以及常见的神经网络结构和应用场景。但是在日常与算法同学打交道中,基本都是算法同学提供模型,工程化同学进行推理获取结果。
那么模型是什么,怎么产生的模型,模型训练和推理又是干嘛的呢?下面我们一一道来。

模型概念

模型是什么?

一个模型通常是一个构建好的并通过数据训练过的神经网络。它会保存学习到的特征和模式,用来对新的数据进行预测或者解决特定的问题。
通常,一个神经网络模型主要包含两部分:结构(Architecture)权重(Weights)

  • 结构:这部分定义了模型的各个层及其连接方式。比如有多少层,每一层有多少个节点,每一层用的是什么类型的激活函数等等。这个结构是设计模型时预先定义好的。
  • 权重:在模型的训练过程中,模型会学习到一些权重和偏置,这些都存储在权重中。这些权重和偏置就是模型从数据中学到的规律和知识,用来进行预测的。

模型参数有哪些

参考:深度学习之参数初始化
参数是模型所需要学习的一部分,通常被认为是模型的"知识"。这些参数处理输入数据,帮助模型做出预测。
以最常见的深度学习模型——神经网络为例,它的参数主要包括权重和偏置。

  1. 权重(Weights):权重决定了每一个输入特征对最终输出预测的影响程度。例如,在多层感知器(MLP)中,每一个输入节点和隐藏节点之间都有一个权重,该权重决定了输入值被乘以多少然后送入下一层节点。
  2. 偏置(Biases):偏置是用来调节神经元的激活阈值。可以看作是当所有的输入特征都为0时模型的预测值。如果没有偏置,神经元的输出就只是输入的加权和,当输入都是0时,输出也会是0。有了偏置之后,即使所有输入都是0,神经元还是有可能被激活。
  3. 公式: Y = W1 * X1 + W2 * X2 + b
    1. 两个输入节点(X1,X2),和一个输出节点(Y)
    2. W1和W2就是权重,分别定义了X1和X2对Y的贡献。
    3. b就是偏置

在神经网络中,我们使用张量来表示权重和偏置。每一层的权重可以用一个二维的张量来表示,其中行表示输入节点的数量,列表示输出节点的数量。偏置则是一个一维的张量,长度等于输出节点的数量。

神经网络参数案例

image.png
由图可知,每一个层内部的组成主要有:
输入X/hi:来自原始样本X的输入(i=0)或上一层(第i−1层)的输出hi。
权重W:网络模型训练的主体对象,第ii层的权重参数wi。
状态值z:作为每一层激活函数f的输入,处于网络层的内部,所以称之为状态值。
激活值h:状态值zi经过了激活函数f后的输出,也就是第i层的最终输出hi;

为什么要生成模型

训练结束之后,我们可以直接使用训练好的神经网络进行推理,但是这样的话不具备移植性,程序运行结束没有存档。
我们可以保存成模型的方式,然后通过解析模型去进行推理,这样的模型是具备移植性的。而且相当于保留了训练成果,可以继续在这个模型上进行进一步的训练。

模型的保存通常包括两部分:
模型的结构和模型的权重。模型的结构保存了神经网络的架构(例如,各个层的类型,层的数量,每层的节点数等),而模型的权重保存了训练过程中学到的模型参数。
在Python的深度学习框架(如TensorFlow, PyTorch)中,“保存”模型通常意味着将模型的结构和权重序列化为二进制格式,并写入磁盘。对于TensorFlow和Keras,保存的模型通常是.h5或.ckpt(Checkpoint)格式的文件;对于PyTorch,保存的模型通常是.pt或.pth格式的文件。

模型的大小

参考:大模型(Large Model)常识综述(三)
这里要区分模型的磁盘大小和训练参数大小的区别。比如现在的大模型,训练参数可能是7b,13b,70b等,这里的b的单位是亿,比如7b代表7亿参数。
而模型的磁盘大小是指神经网络训练结束,保存为模型文件的大小。例如7b的llama2磁盘大小是3.8G, 13b的llama2磁盘大小是7.4G
image.png
我们自定义的神经网络,2层神经网络+单个权重参数,保存模型大小为40k左右。

什么是大模型

**大模型是指具有大规模参数和复杂计算结构的机器学习模型。**这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。

小模型通常指参数较少、层数较浅的模型,它们具有轻量级、高效率、易于部署等优点,适用于数据量较小、计算资源有限的场景,例如移动端应用、嵌入式设备、物联网等。
而当模型的训练数据和参数不断扩大,直到达到一定的临界规模后,其表现出了一些未能预测的、更复杂的能力和特性,模型能够从原始训练数据中自动学习并发现新的、更高层次的特征和模式,这种能力被称为“涌现能力”。而具备涌现能力的机器学习模型就被认为是独立意义上的大模型,这也是其和小模型最大意义上的区别。

模型的训练和推理

机器学习模型的训练和推理是一个基于数据的反馈循环过程。
训练过程是模型学习数据的过程,而推理过程是使用已训练好的模型进行预测或分类的过程。

模型训练

训练概念

一个初始神经网络通过不断的优化自身参数,来让自己变得准确。这整个过程就称之为训练(Training)

训练过程
  1. 数据准备:选择和收集相应的数据集,对数据进行清洗、标注、特征提取等预处理操作,以便让数据适合模型的输入。
  2. 模型选择和定义:根据问题的需求,选择合适的模型架构,比如神经网络、决策树等,并定义模型的结构、参数和超参数。
  3. 模型初始化:对模型参数进行初始化操作,这样可以让模型开始训练时具有一定的初始能力。
  4. 前向传播:将数据输入模型,通过模型的每一层计算,从输入层到输出层的过程称为前向传播。在前向传播过程中,模型会依次计算每一层的输出,并在最后一层产生预测结果。
  5. 激活函数:每个神经元接收到输入后对其加权求和,然后传递给激活函数,根据激活函数的结果确定神经元的输出。
  6. 计算损失函数:将模型预测的结果与真实标签进行比较,计算模型的误差。常用的损失函数有平方损失、交叉熵损失等。
  7. 反向传播:根据损失函数的值,通过反向传播算法计算模型中各个参数的梯度。梯度是损失函数对参数的变化率,反向传播的目的是根据模型对样本的预测误差来调整模型参数,使得预测结果更加准确。
  8. 参数更新:利用优化算法(如梯度下降算法)根据梯度信息对模型参数进行更新。更新参数的过程会降低模型在当前任务上的训练误差。
  9. 重复迭代:通过重复执行前面的步骤,不断训练模型,直到模型的性能达到预期或收敛。

训练过程中的一些概念

正向传播: 输入信号从输入层经过各个隐藏层向输出层传播。在输出层得到实际的响应值,若实际值与期望值误差较大,就会转入误差反向传播阶段。
反向传播: 按照梯度下降的方法从输出层经过各个隐含层并逐层不断地调整各神经元的连接权值和阈值,反复迭代,直到网络输出的误差减少到可以接受的程度,或者进行到预先设定的学习次数。
代(Epoch): 使用训练集的全部数据对模型进行一次完整训练,被称为“一代训练”。
批大小(Batch size): 使用训练集的一小部分样本对模型权重进行一次反向传播的参数更新,这一小部分样本被称为“一批数据”
迭代(Iteration): 使用一个Batch数据对模型进行一次参数更新的过程,被称为“一次训练”(一次迭代)。每一次迭代得到的结果都会被作为下一次迭代的初始值。一个迭代=一个正向通过+一个反向通过。
2018122814580746.png
比如训练集有500个样本,batchsize = 10 ,那么训练完整个样本集:iteration=50,epoch=1.

模型推理

推理概念

你训练好了一个模型,在训练数据集中表现良好,但是我们的期望是它可以对以前没看过的图片进行识别。你重新拍一张图片扔进网络让网络做判断,这种图片就叫做现场数据(livedata),如果现场数据的区分准确率非常高,那么证明你的网络训练的是非常好的。这个过程,称为推理(Inference)。

推理过程
  1. 数据准备:与训练过程相似,对输入数据进行预处理和特征提取。
    2. 模型加载:将训练好的模型加载到内存中,准备进行推理。
    3. 前向传播:将处理后的数据输入模型,并通过前向传播计算得到输出结果。
    4. 输出解释:针对输出结果进行解释和处理,根据具体的问题进行分类、回归、预测等。
    5. 结果反馈:将输出结果反馈给用户或其他系统,完成推理过程。

需要注意的是,训练过程通常需要大量的数据和计算资源来完成,而推理过程相对较快,因为训练过程中大部分的计算已经在模型参数更新时完成了。

总结

本篇博客主要介绍了神经网络中模型的相关概念以及模型的训练和推理过程。整体来说更偏概念性,特别是训练和推理部分。后续我们会在自定义神经网络部分详细解释训练和推理在代码上的表示。

end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/408760.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java中PDF文件传输有哪些方法?

专栏集锦,大佬们可以收藏以备不时之需: Spring Cloud 专栏:http://t.csdnimg.cn/WDmJ9 Python 专栏:http://t.csdnimg.cn/hMwPR Redis 专栏:http://t.csdnimg.cn/Qq0Xc TensorFlow 专栏:http://t.csdni…

Redis 多规则限流和防重复提交方案实现

Redis 如何实现限流的,但是大部分都有一个缺点,就是只能实现单一的限流,比如 1 分钟访问 1 次或者 60 分钟访问 10 次这种, 但是如果想一个接口两种规则都需要满足呢,项目又是分布式项目,应该如何解决&…

飞天使-linux操作的一些技巧与知识点7-devops

文章目录 简述devopsCICD 简述devops 让技术团队,运维,测试等团队实现一体式流程自动化 进阶版图 CICD 持续集成, 从编译,测试,发布的完成自动化流程 持续交付,包含持续集成,并且将项目部署…

2023年总结与2024展望

今天是春节后上班第一天,你懂的,今天基本上是摸鱼状态,早上把我们负责的项目的ppt介绍完善了一下,然后写了一篇技术文章,《分布式系统一致性与共识算法》。接着就看了我近几年写的的年度总结,我一般不会在元…

K线实战分析系列之八:十字星——容易识别的特殊形态

K线实战分析系列之八:十字星——容易识别的特殊形态 一、十字启明星和十字黄昏星二、弃婴底部形态和弃婴顶部形态三、总结十字启明星和十字黄昏星形态的要点 一、十字启明星和十字黄昏星 当开盘价与收盘价极为接近的时候,当期的K线就呈现为一根十字线&am…

01|Mysql底层存储引擎

1. 聚集索引(聚簇)与非聚集索引 1.1 聚集索引 索引和数据存储在一起。叶子节点存储了完整的数据记录; 1.2 非聚集索引 MyISAM存储引擎就是非聚集索引,索引和数据文件是分开存储的。索引在MYI文件中,数据在MYD文件中…

蓝桥杯-数字三角形

原题链接:用户登录 上图给出了一个数字三角形。从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,你的任务就是找到最大的和 (路径上的每一步只可沿左斜线向下或右斜线向下走)。 输入描述 输入的第…

普中51单片机学习(8*8LED点阵)

8*8LED点阵 实验代码 #include "reg52.h" #include "intrins.h"typedef unsigned int u16; typedef unsigned char u8; u8 lednum0x80;sbit SHCPP3^6; sbit SERP3^4; sbit STCPP3^5;void HC595SENDBYTE(u8 dat) {u8 a;SHCP1;STCP1;for(a0;a<8;a){SERd…

Jmeter分布式测试必踩坑,全部帮你排雷

在jmeter分布式环境部署上&#xff0c;有很同学都遇到了不少问题&#xff0c;就算是看过安装教程&#xff0c;也会在实际操作的时候一脸懵&#xff0c;经常的状态是就是&#xff1a;眼睛会了手不会。 所以我们把大家容易出问题的地方总结出来&#xff0c;一起来看看吧&#xff…

5个免费文章神器,用来改写文章太方便了

在当今信息爆炸的时代&#xff0c;内容创作和编辑是网络世界中至关重要的环节。然而&#xff0c;有时候我们可能会遇到一些内容需要进行改写或者重组的情况。为了提高效率&#xff0c;让这一过程更加顺畅&#xff0c;我们可以借助一些免费的文章神器来帮助我们完成这一任务。下…

板块一 Servlet编程:第七节 ServletContext对象全解与Servlet三大域对象总结 来自【汤米尼克的JAVAEE全套教程专栏】

板块一 Servlet编程&#xff1a;第七节 ServletContext对象全解与Servlet三大域对象总结 一、什么是ServletContext对象二、获取ServletContext对象及常用方法&#xff08;1&#xff09;获取 ServletContext 对象&#xff08;2&#xff09;ServletContext对象提供的方法 三、se…

pytorch自定义数据集分类resnet18

# 文件结构为&#xff1a; # |--- data # |--- dog # |--- dog1_1.jpg # |--- dog1_2.jpg # |--- cat # |--- cat2_1.jpg # |--- cat2_2.jpg import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import to…

【软件测试面试】要你介绍项目-如何说?完美面试攻略...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、测试面试时&am…

UI风格汇:扁平化风格来龙去脉,特征与未来趋势

Hello&#xff0c;我是大千UI工场&#xff0c;设计风格是我们新开辟的栏目&#xff0c;主要讲解各类UI风格特征、辨识方法、应用场景、运用方法等&#xff0c;本次带来的扁平化风格的解读&#xff0c;有设计需求&#xff0c;我们也可以接单。 一、什么是扁平化风格 扁平化风格…

C# EF Core迁移数据库

现象&#xff1a; 在CodeFirst时&#xff0c;先写字段与表&#xff0c;创建数据库后&#xff0c;再添加内容 但字段与表会变更&#xff0c;比如改名删除增加等 需求&#xff1a; 当表字段变更时&#xff0c;同时变更数据库&#xff0c;执行数据库迁移 核心命令 Add-Migrat…

陪诊小程序:温暖您的就医之路,让关怀触手可及

随着社会的进步和科技的发展&#xff0c;人们对于医疗健康的需求日益增长。然而&#xff0c;在繁忙的生活节奏中&#xff0c;许多人在面对就医时却面临着无人陪伴的困境。为了解决这一问题&#xff0c;陪诊小程序应运而生。 陪诊小程序是一种便捷、高效、人性化的医疗服务应用…

9-pytorch-现有模型使用及修改

b站小土堆pytorch教程学习笔记 1 使用ImageNet测试模型vgg16 train_datatorchvision.datasets.ImageNet(dataset/ImageNet,trainTrue ,downloadTrue ,transformtorchvision.transforms.ToTensor())代码运行报错&#xff1a;ImageNet数据集过大&#xff0c;导致现在无法公开访问…

聊聊 Go 边界检查消除

前言 在这篇文章中碰巧看到了Go边界检查消除相关的讨论. 我也借此简单聊聊. 有这样一段代码, 非常简单, 就是一段求向量点积的程序: func sum(a, b []int) int {if len(a) ! len(b) {panic("must be same len")}ret : 0for i : 0; i < len(a); i {ret a[i] * …

SAM轻量化的终点竟然是RepViT + SAM

本文首发&#xff1a;AIWalker&#xff0c;欢迎关注~~ 殊途同归&#xff01;SAM轻量化的终点竟然是RepViT SAM&#xff0c;移动端速度可达38.7fps。 对于 2023 年的计算机视觉领域来说&#xff0c;「分割一切」&#xff08;Segment Anything Model&#xff09;是备受关注的一项…

0-1背包问题-动态规划

解法归纳&#xff1a; 一、如果装不下当前物品&#xff0c;那么前n个物品的最佳组合和前n-1个物品的最佳组合是一样的。 二、如果装得下当前物品。 假设1 :装当前物品&#xff0c;在给当前物品预留了相应空间的情况下&#xff0c;前n-1 个物品的最佳组 合加上当前物品的价值就…