C++之类作用域

目录

1、全局作用域

2、类作用域

2.1、设计模式之Pimpl

2.2、单例模式的自动释放

2.2.0、检测内存泄漏的工具valgrind

2.2.1、可以使用友元形式进行设计

2.2.2、内部类加静态数据成员形式

2.2.3、atexit方式进行

2.2.4、pthread_once形式


 

作用域可以分为类作用域、类名的作用域以及对象的作用域几部分内容。在类中定义的成员变量和成员函数的作用域是整个类,这些名称只有在类中(包含类的定义部分和类外函数实现部分)是可见的,在类外是不可见的,因此,可以在不同类中使用相同的成员名。另外,类作用域意味着不能从外部直接访问类的任何成员,即使该成员的访问权限是public,也要通过对象名来调用,对于static成员函数,要指定类名来调用。
如果发生“屏蔽”现象,类成员的可见域将小于作用域,但此时可借助this指针或“类名::”形式指明所访问的是类成员,这有些类似于使用::访问全局变量。例如:

#include <iostream>
using std::cout;
using std::endl;
int num = 1;
namespace wd
{

	int num = 20;

	class Example
	{
	public:
		void print(int num) const
		{
			cout << "形参num = " << num << endl;
			cout << "数据成员num = " << this->num << endl;
			cout << "数据成员num = " << Example::num << endl;
			cout << "命名空间中num = " << wd::num << endl;
			cout << "全局变量num = " << ::num << endl;
		}
	private:
		int num;
	};
}//end of namespace wd

int main()
{
	wd::Example().print(100); //通过匿名对象调用print函数

	return 0;
}

和函数一样,类的定义没有生存期的概念,但类定义有作用域可见域。使用类名创建对象时,首要的前提是类名可见,类名是否可见取决于类定义的可见域,该可见域同样包含在其作用域中,类本身可被定义在3种作用域内,这也是类定义的作用域。

1、全局作用域

在函数和其他类定义的外部定义的类称为全局类,绝大多数的 C++ 类是定义在该作用域中,我们在前面定义的所有类都是在全局作用域中,全局类具有全局作用域。

2、类作用域

一个类可以定义在另一类的定义中,这是所谓嵌套类或者内部类,举例来说,如果类A定义在类B中,如果A的访问权限是public,则A的作用域可认为和B的作用域相同,不同之处在于必须使用B::A的形式访问A的类名。当然,如果A的访问权限是private,则只能在类内使用类名创建该类的对象,无法在外部创建A类的对象。

#include<iostream>
using namespace std;
class Line
{
public:
	Line(int x1, int y1, int x2, int y2);
	void printLine() const;

private:
	class Point
	{
	public:
		Point(int x = 0, int y = 0)
			: _x(x), _y(y)
		{

		}

		void print() const;
	private:
		int _x;
		int _y;
	};
private:
	Point _pt1;
	Point _pt2;
};
Line::Line(int x1, int y1, int x2, int y2)
	: _pt1(x1, y1)
	, _pt2(x2, y2)
{

}
void Line::printLine() const
{
	_pt1.print();
	cout << " ---> ";
	_pt2.print();
	cout << endl;
}
void Line::Point::print() const
{
	cout << "(" << _x
		<< "," << _y
		<< ")";
}
int main()
{
	Line l1(1, 2, 3, 4);
	l1.printLine();

	return 0;
}

注意:由于Point是私有类,不能在类外对其进行访问:

如果是正确定义的:

2.1、设计模式之Pimpl

PImpl是Pointer to Implementation的缩写,也被称为“编译期实现”,是一种C++设计的模式。 用于将类的实现细节与其公共接口分离开来。该模式的核心思想是 通过一个指向类的实现的指针来隐藏类的实现细节,从而提高类的封装性和安全性。

PImpl是一种C++编程技巧,它将类的实现细节从对象表示中移除,放到一个分离的类中,并以一个不透明的指针进行访问。 此技巧用于构造拥有稳定 ABI 的 C++ 库接口,及减少编译时依赖。


一.PImpl的好处
使用PImpl模式的好处是:

可以避免对实现细节的公开,从而减少了头文件中的依赖项和编译时间,并且使得类的实现可以更加灵活和方便地修改,而不会影响其公共接口。

在使用PImpl模式时,通常需要将类的实现细节封装在一个单独的结构体或类中,称为“实现类”或“pImpl类”,然后通过一个指向该实现类的指针来访问实现细节。这个指针通常作为 类的私有成员变量,并在类的构造函数和析构函数中进行初始化和清理。这样,当类的实现细节发生变化时,只需要修改实现类而不需要修改公共接口,从而实现了类的高内聚低耦合的设计目标。

 参考博客:

设计模式之Pimpl模式-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/xhtchina/article/details/112795569?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522170865960916800227465939%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=170865960916800227465939&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~sobaiduend~default-2-112795569-null-null.nonecase&utm_term=%E8%AE%BE%E8%AE%A1%E6%A8%A1%E5%BC%8F%E4%B9%8BPimpl&spm=1018.2226.3001.4450

2.2、单例模式的自动释放

在类和对象那一章,我们看过单例模式,其中对象是由_pInstance指针来保存的,而在使用单例设计模式的过程中,也难免会遇到内存泄漏的问题。那么是否有一个方法,可以让对象自动释放,而不需要程序员自己手动去释放呢?在学习了嵌套类之后,我们就可以完美的解决这一问题。
在涉及到自动的问题时,我们很自然的可以想到:当对象被销毁时,会自动调用其析构函数。利用这一特性,我们可以解决这一问题。

2.2.0、检测内存泄漏的工具valgrind

" 安装方式:
$ sudo apt install valgrind
" 使用方式:
$ valgrind --tool=memcheck --leak-check=full ./test

2.2.1、可以使用友元形式进行设计

//1、友元实现单例对象的自动释放
class AutoRelease;
class Singleton
{
  friend AutoRelease;
public:
  static Singleton *getInstance()
{
    if(nullptr == _pInstance)
   {
      _pInstance = new Singleton();
   }
    return _pInstance;
 }
  static void destroy()
 {
    if(_pInstance)
   {
      delete _pInstance; //1、调用析构函数 2、operator delete
      _pInstance = nullptr;
   }
 }
private:
  Singleton()
 {
    cout << "Singleton()" << endl;
 }
  ~Singleton()
 {
    cout << "~Singleton()" << endl;
 }
private:
  static Singleton *_pInstance;
};
Singleton *Singleton::_pInstance = nullptr;
class AutoRelease
{
public:
  AutoRelease()
 {
    cout << "AutoRelease()" << endl;
 }
  ~AutoRelease()
 {
    cout << "~AutoRelease()" << endl;
    if(Singleton::_pInstance)
   {
      delete Singleton::_pInstance;//1、调用析构函数 2、operator delete
      Singleton::_pInstance = nullptr;
   }
 }
};

2.2.2、内部类加静态数据成员形式

class Singleton
{
public:
  static Singleton * getInstance()
 {
    if(_pInstance == nullptr)
   {
      _pInstance = new Singleton();
   }
    return _pInstance;
 }
 
private:
  class AutoRelease
 {
  public:
    AutoRelease()
   {
      cout << "AutoRelease()" << endl;
   }
   
    ~AutoReleas()
   {
      cout << "~AutoRelease()" << endl;
     
    if(_pInstance)
     {
        delete _pInstance;
        _pInstance = nullptr;
     }
   }
 };
private:
  Singleton()
 {
    cout << "Singleton()" << endl;
 }
 
  ~Singleton()
 {
    cout << "~Singleton()" << endl;
 }
 
private:
  static Singleton *_pInstance;
  static AutoRelease  _auto;
};

2.2.3、atexit方式进行

class Singleton
{
public:
  static Singleton *getInstance()
 {
    //对于多线程环境,不安全
    if(nullptr == _pInstance)
   {
      _pInstance = new Singleton();
      atexit(destroy);
   }
    return _pInstance;
 }
  static void destroy()
 {
    if(_pInstance)
   {
      delete _pInstance;//1、调用析构函数 2、operator delete
      _pInstance = nullptr;
   }
 }
private:
  Singleton()
 {
    cout << "Singleton()" << endl;
 }
  ~Singleton()
 {
    cout << "~Singleton()" << endl;
 }
private:
  static Singleton *_pInstance;
};
/* Singleton *Singleton::_pInstance = nullptr; //饱汉模式(懒汉模式)*/
Singleton *Singleton::_pInstance = getInstance();//饿汉模式

2.2.4、pthread_once形式

//4、pthread_once,平台相关性的函数
class Singleton
{
public:
  static Singleton *getInstance()
 {
    pthread_once(&_once, init);
    return _pInstance;
}
  static void init()
 {
    _pInstance = new Singleton();
    atexit(destroy);
 }
  static void destroy()
 {
    if(_pInstance)
   {
      delete _pInstance;//1、调用析构函数 2、operator delete
      _pInstance = nullptr;
   }
 }
private:
  Singleton()
 {
    cout << "Singleton()" << endl;
 }
  ~Singleton()
 {
    cout << "~Singleton()" << endl;
 }
private:
  static Singleton *_pInstance;
  static pthread_once_t _once;
};
Singleton *Singleton::_pInstance = nullptr; //饱汉模式(懒汉模式)
/* Singleton *Singleton::_pInstance = getInstance();//饿汉模式 */
pthread_once_t Singleton::_once = PTHREAD_ONCE_INIT;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/406382.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

高并发系统实战课个人总结(极客时间)

高并发系统实战课 场景 读多写少 我会以占比最高的“读多写少”系统带你入门&#xff0c;梳理和改造用户中心项目。这类系统的优化工作会聚焦于如何通过缓存分担数据库查询压力&#xff0c;所以我们的学习重点就是做好缓存&#xff0c;包括但不限于数据梳理、做数据缓存、加缓…

有趣的CSS - 文字加载动画效果

大家好&#xff0c;我是 Just&#xff0c;这里是「设计师工作日常」&#xff0c;今天分享的是用 css 实现多字符模拟加载动画效果。 《有趣的css》系列最新实例通过公众号「设计师工作日常」发布。 目录 整体效果核心代码html 代码css 部分代码 完整代码如下html 页面css 样式页…

【Python笔记-设计模式】享元模式

一、说明 享元模式是一种结构型设计模式&#xff0c;它摒弃了在每个对象中保存所有数据的方式&#xff0c;通过共享多个对象所共有的相同状态&#xff0c;让你能在有限的内存容量中载入更多对象。 (一) 解决问题 旨在减少大量相似对象创建时的内存开销 (二) 使用场景 大量…

这是我见过最全的权限系统设计方案!

日常工作中权限的问题时时刻刻伴随着我们&#xff0c;程序员新入职一家公司需要找人开通各种权限&#xff0c;比如网络连接的权限、编码下载提交的权限、监控平台登录的权限、运营平台查数据的权限等等。 在很多时候我们会觉得这么多繁杂的申请给工作带来不便&#xff0c;并且…

[更新]ARCGIS之土地耕地占补平衡、进出平衡系统报备坐标txt格式批量导出工具(定制开发版)

序言 之前开发的耕地占补平衡报备格式&#xff0c;现在之前的基础上集成了耕地进出平衡报备格式导出。 之前版本软件详见&#xff1a;软件介绍 一、软件简介 本软件是基于arcgis二次开发的工具&#xff08;插件&#xff09;&#xff0c;需要授权后才能使用&#xff1b; 本软件…

125 Linux C++ 系统编程4 Linux 静态库制作,动态库制作,静态库和动态库对比。静态库运行时找不到库的bug fix

一 静态库 和动态库 对比 静态库的原理&#xff1a;假设我们有一个 静态库&#xff0c;大小为500M&#xff0c;这个静态库实现了一些打牌的逻辑算法&#xff0c;提供了一堆API&#xff0c;让开发者 可以轻松的实现 54张扑克牌的随机发牌&#xff0c;指定发牌等功能。 我们写了…

Nuxt3实现多语言与事件总线(EventBus)

我的nuxt版本为 3.10.0 一、多语言实现 这里我使用得是 nuxtjs/i18n 这个库 安装 npm install -D nuxtjs/i18nnext根目录创建 i18n.config.ts 文件 export default {legacy: false,locale: zh, // 默认值messages: {zh: {home: 首页,useKill: 使用技巧,helpCenter: 帮助中…

H桥逆变控制方式(单极性倍频)

单极性倍频图像 内部做了载波取反&#xff1a;正相载波和负相载波 最后都和调制载波一起比较 正相载波&#xff1a;Q7导通为高电平&#xff0c;Q15导通为低电平 负相载波&#xff1a;Q16导通为高电平&#xff0c;Q8导通为低电平 导通次序为&#xff1a;Q7Q16——Q7Q8——Q7Q…

Mamba 作者谈 LLM 未来架构

文章目录 前言 1、为什么注意力机制有效&#xff1f; 2、注意力计算量呈平方级增长 3、Striped Hyena 是个什么模型&#xff1f; 4、什么是 Mamba? 5、Mamba 硬件优化 6、2024年架构预测 7、对 AI 更多的预测 本片文章来自【机器之心】对Mamba作者进行采访所进行的编译整理。 …

Sora 对未来视频创作伦理的挑战和思考

Sora 对未来视频创作伦理的挑战和思考 随着人工智能技术的飞速发展&#xff0c;AI视频模型Sora的出现为视频创作带来了革命性的变革。然而&#xff0c;在技术进步的同时&#xff0c;也带来了一些伦理问题值得我们深思。 1. 真实性和虚假信息: Sora能够生成逼真的视频画面&…

初识51单片机

##江科大51单片机学习 什么是单片机&#xff1f;&#xff1f;&#xff1f; 单片机&#xff0c;英文名&#xff0c;Micro Controller Unit&#xff0c;简称MCU&#xff08;tips&#xff1a;有人会简称它为CPU&#xff0c;但不是如此&#xff0c;CPU其实被集成在MCU中&#xff…

人工智能 — 数字图像

目录 一、图像1、像素2、图像分辨率3、RGB 模型4、灰度5、通道6、对比度7、RGB 转化为 Gray8、RGB 值转化为浮点数9、二值化10、常用视觉库11、频率12、幅值 二、图像的取样与量化1、数字图像2、取样3、量化 三、上采样与下采样1、上采样&#xff08;upsampling&#xff09;2、…

测试计划、测试方案、测试策略、测试用例的区别

一 测试计划 测试计划是指描述了要进行的测试活动的范围、方法、资源和进度的文档。它主要包括测试项、被测特性、各阶段的测试任务、时间进度安排&#xff0c;谁执行任务和风险控制等&#xff0c;可以包括测试策略。 二 测试方案 测试方案是指描述需要测试的特性、测试的方…

jvm-jvm七款经典垃圾收集器

一&#xff0c;七款经典垃圾收集器 七款经典的垃圾收集器&#xff1a; 收集器串行、并行or并发新生代/老年代算法目标适用场景Serial串行新生代复制算法响应速度优先单CPU环境下的Client模式Serial Old串行老年代标记-整理响应速度优先单CPU环境下的Client模式、CMS的后备预案…

基于Java SSM框架实现艺诚美业管理系统项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架实现艺诚美业管理系统演示 摘要 21世纪的今天&#xff0c;随着社会的不断发展与进步&#xff0c;人们对于信息科学化的认识&#xff0c;已由低层次向高层次发展&#xff0c;由原来的感性认识向理性认识提高&#xff0c;管理工作的重要性已逐渐被人们所认识&a…

SpringBoot实现缓存预热的几种常用方案

&#x1f3f7;️个人主页&#xff1a;牵着猫散步的鼠鼠 &#x1f3f7;️系列专栏&#xff1a;Java全栈-专栏 &#x1f3f7;️个人学习笔记&#xff0c;若有缺误&#xff0c;欢迎评论区指正 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&…

visual studio2019怎么修改字体

点击菜单栏中的“工具” “选项” 环境 -> 字体和颜色 Consolas是vscode的默认字体&#xff0c;还挺好用的。

【自然语言处理-二-attention注意力 是什么】

自然语言处理二-attention 注意力机制 自然语言处理二-attention 注意力记忆能力回顾下RNN&#xff08;也包括LSTM GRU&#xff09;解决memory问题改进后基于attention注意力的modelmatch操作softmax操作softmax值与hidder layer的值做weight sum 计算和将计算出来的和作为memo…

linux服务器tomcat日志中文出现问号乱码

目录 一、场景二、排查三、原因四、解决 一、场景 tomcat日志的中文出现问号乱码 乱码示例 ??[377995738417729536]????????? ac??????????????message:二、排查 1、使用locale命令查看服务器当前使用的语言包 发现只用的语言包为utf-8&#xff0…

CSDN付费阅读需要哪些条件?

文章目录 前言一、博客等级要求二、原力等级要求结束语 前言 hello&#xff0c;大家好&#xff01;我是BoBo仔吖&#xff0c;祝大家元宵节快乐呀~ csdn是一个善良的网站&#xff0c;它提供了各种功能空间&#xff0c;比如InsCode运行代码&#xff0c;还有鼓舞大家努力发文的勋…