lecture08数据集导入和构建
课程网址
Pytorch深度学习实践
部分课件内容:
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
class DiabetesDataset(Dataset):
def __init__(self):
xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32)
self.len = xy.shape[0]
self.x_data = torch.from_numpy(xy[:,:-1]) #第一列开始最后一列不要
self.y_data = torch.from_numpy(xy[:,[-1]]) # 取最后一列
def __len__(self):
return self.len
def __getitem__(self, index):
return self.x_data[index],self.y_data[index]
dataset = DiabetesDataset()
train_loader = DataLoader(dataset=dataset, batch_size=32, shuffle=True,num_workers=2)
class LogisticRegressionModel(torch.nn.Module):
def __init__(self):
super(LogisticRegressionModel, self).__init__()
self.linear1 = torch.nn.Linear(8,6)
self.linear2 = torch.nn.Linear(6,4)
self.linear3 = torch.nn.Linear(4,1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = LogisticRegressionModel()
criterion = torch.nn.BCELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
if __name__ == '__main__':
for epoch in range(100):
for i, data in enumerate(train_loader, 0):
inputs, labels = data
y_pred = model(inputs)
loss = criterion(y_pred, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(epoch, i, loss.data)