【Flink状态管理(八)】Checkpoint:CheckpointBarrier对齐后Checkpoint的完成、通知与对学习状态管理源码的思考

文章目录

  • 一. 调用StreamTask执行Checkpoint操作
    • 1. 执行Checkpoint总体代码流程
      • 1.1. StreamTask.checkpointState()
      • 1.2. executeCheckpointing
      • 1.3. 将算子中的状态快照操作封装在OperatorSnapshotFutures中
      • 1.4. 算子状态进行快照
      • 1.5. 状态数据快照持久化
  • 二. CheckpointCoordinator管理Checkpoint
    • 1. Checkpoint执行完毕后的确认过程
    • 2. 触发并完成Checkpoint操作
    • 3. 通知CheckpointComplete给TaskExecutor
  • 三. 状态管理学习小结

上文介绍了CheckpointBarrier的对齐操作,当CheckpointBarrier完成对齐操作后,接下来就是通过notifyCheckpoint()方法触发StreamTask节点的Checkpoint操作。

一. 调用StreamTask执行Checkpoint操作

如下代码,notifyCheckpoint()方法主要包含如下逻辑。

> 1. 判断toNotifyOnCheckpoint不为空。
> 2. 创建CheckpointMetaDataCheckpointMetrics实例,CheckpointMetaData用于存储
> Checkpoint的元信息,CheckpointMetrics用于记录和监控Checkpoint监控指标。
> 3. 触发StreamTask中算子的Checkpoint操作。
protected void notifyCheckpoint(CheckpointBarrier checkpointBarrier, 
                                long bufferedBytes, 
                                long alignmentDurationNanos) throws Exception {
   if (toNotifyOnCheckpoint != null) {
      // 创建CheckpointMetaData对象用于存储Meta信息
      CheckpointMetaData checkpointMetaData =
         new CheckpointMetaData(checkpointBarrier.getId(), 
                                checkpointBarrier.getTimestamp());
            // 创建CheckpointMetrics对象用于记录监控指标
      CheckpointMetrics checkpointMetrics = new CheckpointMetrics()
         .setBytesBufferedInAlignment(bufferedBytes)
         .setAlignmentDurationNanos(alignmentDurationNanos);
      // 调用toNotifyOnCheckpoint.triggerCheckpointOnBarrier()方法触发Checkpoint
        操作
      toNotifyOnCheckpoint.triggerCheckpointOnBarrier(
         checkpointMetaData,
         checkpointBarrier.getCheckpointOptions(),
         checkpointMetrics);
   }
}

注意:StreamTask是唯一实现了Checkpoint方法的子类,即只有StreamTask才能触发当前Task实例中的Checkpoint操作。

 

接下来具体看Checkpoint执行细节

1. 执行Checkpoint总体代码流程

Checkpoint触发过程分为两种情况:一种是CheckpointCoordinator周期性地触发数据源节点中的Checkpoint操作;另一种是下游算子通过对齐CheckpointBarrier事件触发本节点算子的Checkpoint操作。

不管是哪种方式触发Checkpoint,最终都是调用StreamTask.performCheckpoint()方法实现StreamTask实例中状态数据的持久化操作。

 

在StreamTask.performCheckpoint()方法中,首先判断当前的Task是否运行正常,然后使用actionExecutor线程池执行Checkpoint操作,Checkpoint的实际执行过程如下。

  1. Checkpoint执行前的准备操作,让OperatorChain中所有的Operator执行Pre-barrier工作。
  2. 将CheckpointBarrier事件发送到下游的节点中。
  3. 算子状态数据进行快照

执行checkpointState()方法,对StreamTask中OperatorChain的所有算子进行状态数据的快照操作,该过程为异步非阻塞过程,不影响数据的正常处理进程,执行完成后会返回True到CheckpointInputGate中。

  1. task挂掉情况处理:
  • 如果isRunning的条件为false,表明Task不在运行状态,此时需要给OperatorChain中的所有算子发送CancelCheckpointMarker消息,这里主要借助recordWriter.broadcastEvent(message)方法向下游算子进行事件广播。
  • 当且仅当OperatorChain中的算子还没有执行完Checkpoint操作的时候,下游的算子接收到CancelCheckpointMarker消息后会立即取消Checkpoint操作。
private boolean performCheckpoint(
      CheckpointMetaData checkpointMetaData,
      CheckpointOptions checkpointOptions,
      CheckpointMetrics checkpointMetrics,
      boolean advanceToEndOfTime) throws Exception {
   LOG.debug("Starting checkpoint ({}) {} on task {}",
             checkpointMetaData.getCheckpointId(), 
             checkpointOptions.getCheckpointType(), 
             getName());
   final long checkpointId = checkpointMetaData.getCheckpointId();
   if (isRunning) {
      // 使用actionExecutor执行Checkpoint逻辑
      actionExecutor.runThrowing(() -> {
         if (checkpointOptions.getCheckpointType().isSynchronous()) {
             setSynchronousSavepointId(checkpointId);
             if (advanceToEndOfTime) {
                 advanceToEndOfEventTime();
            }
         }
         //Checkpoint操作的准备工作
         operatorChain.prepareSnapshotPreBarrier(checkpointId);
         //将checkpoint barrier发送到下游的stream中
         operatorChain.broadcastCheckpointBarrier(
               checkpointId,
               checkpointMetaData.getTimestamp(),
               checkpointOptions);
         //对算子中的状态进行快照操作,此步骤是异步操作,
         //不影响streaming拓扑中数据的正常处理
         checkpointState(checkpointMetaData, checkpointOptions, 
            checkpointMetrics);
      });
      return true;
   } else {
      // 如果Task处于其他状态,则向下游广播CancelCheckpointMarker消息
      actionExecutor.runThrowing(() -> {
         final CancelCheckpointMarker message = 
             new CancelCheckpointMarker(checkpointMetaData.getCheckpointId());
         recordWriter.broadcastEvent(message);
      });
      return false;
   }
}

 

1.1. StreamTask.checkpointState()

接下来我们看StreamTask.checkpointState()方法的具体实现,如下代码。

  1. 创建CheckpointStateOutputStream实例。主要有如下两种实现类:
    • FsCheckpointStateOutputStream:文件类型系统
    • MemoryCheckpointOutputStream:内存的数据流输出。
  2. 创建CheckpointingOperation实例,CheckpointingOperation封装了Checkpoint执行的具体操作流程,以及checkpointMetaData、checkpointOptions、storage和checkpointMetrics等Checkpoint执行过程中需要的环境配置信息。
  3. 调用CheckpointingOperation.executeCheckpointing()方法执行Checkpoint操作。
private void checkpointState(
      CheckpointMetaData checkpointMetaData,
      CheckpointOptions checkpointOptions,
      CheckpointMetrics checkpointMetrics) throws Exception {
     // 创建CheckpointStreamFactory实例
   CheckpointStreamFactory storage = checkpointStorage.resolveCheckpointStorag
      eLocation(
         checkpointMetaData.getCheckpointId(),
         checkpointOptions.getTargetLocation());
     // 创建CheckpointingOperation实例
   CheckpointingOperation checkpointingOperation = new CheckpointingOperation(
      this,
      checkpointMetaData,
      checkpointOptions,
      storage,
      checkpointMetrics);
   // 执行Checkpoint操作
   checkpointingOperation.executeCheckpointing();
}

 

1.2. executeCheckpointing

如代码所示,CheckpointingOperation.executeCheckpointing()方法主要包含如下逻辑。

  1. 遍历所有StreamOperator算子,然后调用checkpointStreamOperator()方法为每个算子创建OperatorSnapshotFuture对象。这一步将所有算子的快照操作存储在OperatorSnapshotFutures集合中。
  2. 将OperatorSnapshotFutures存储到operatorSnapshotsInProgress的键值对集合中,其中Key为OperatorID,Value为该算子执行状态快照操作对应的OperatorSnapshotFutures对象
  3. 创建AsyncCheckpointRunnable线程对象,AsyncCheckpointRunnable实例中包含了创建好的OperatorSnapshotFutures集合。
  4. 调用StreamTask.asyncOperationsThreadPool线程池运行asyncCheckpointRunnable线程,执行operatorSnapshotsInProgress集合中算子的异步快照操作。
public void executeCheckpointing() throws Exception {
   //通过算子创建执行快照操作的OperatorSnapshotFutures对象
   for (StreamOperator<?> op : allOperators) {
      checkpointStreamOperator(op);
   }
   // 此处省略部分代码
   startAsyncPartNano = System.nanoTime();
   checkpointMetrics.setSyncDurationMillis(
      (startAsyncPartNano - startSyncPartNano) / 1_000_000);
   AsyncCheckpointRunnable asyncCheckpointRunnable = new 
      AsyncCheckpointRunnable(
      owner,
      operatorSnapshotsInProgress,
      checkpointMetaData,
      checkpointMetrics,
      startAsyncPartNano);
   // 注册Closeable操作
   owner.cancelables.registerCloseable(asyncCheckpointRunnable);
   // 执行asyncCheckpointRunnable
         owner.asyncOperationsThreadPool.execute(asyncCheckpointRunnable);
 }

 

1.3. 将算子中的状态快照操作封装在OperatorSnapshotFutures中

如下代码,AbstractStreamOperator.snapshotState()方法将当前算子的状态快照操作封装在OperatorSnapshotFutures对象中,然后通过asyncOperationsThreadPool线程池异步触发所有的OperatorSnapshotFutures操作,方法主要步骤如下。

  1. 创建OperatorSnapshotFutures对象,封装当前算子对应的状态快照操作。
  2. 创建snapshotContext上下文对象,存储快照过程需要的上下文信息,并调用snapshotState()方法执行快照操作。

snapshotState()方法由StreamOperator子类实现,例如在AbstractUdfStreamOperator中会调用StreamingFunctionUtils.snapshotFunctionState(context,getOperatorStateBackend(),
userFunction)方法执行函数中的状态快照操作。

  1. 向snapshotInProgress中指定KeyedStateRawFuture和OperatorStateRawFuture,专门用于处理原生状态数据的快照操作
  • 如果operatorStateBackend不为空,则将operatorStateBackend.snapshot()方法块设定到OperatorStateManagedFuture中,并注册到snapshotInProgress中等待执行。
  • 如果keyedStateBackend不为空,则将keyedStateBackend.snapshot()方法块设定到KeyedStateManagedFuture中,并注册到snapshotInProgress中等待执行。
  1. 返回创建的snapshotInProgress异步Future对象,snapshotInProgress中封装了当前算子需要执行的所有快照操作。
public final OperatorSnapshotFutures snapshotState(long checkpointId, 
                                                   long timestamp, 
                                                   CheckpointOptions 
                                                   checkpointOptions,
                                                   CheckpointStreamFactory factory
                                                   ) throws Exception {
      // 获取KeyGroupRange
   KeyGroupRange keyGroupRange = null != keyedStateBackend ?
         keyedStateBackend.getKeyGroupRange() : KeyGroupRange.EMPTY_KEY_GROUP_
            RANGE;
      // 创建OperatorSnapshotFutures处理对象
   OperatorSnapshotFutures snapshotInProgress = new OperatorSnapshotFutures();
      // 创建snapshotContext上下文对象
   StateSnapshotContextSynchronousImpl snapshotContext = 
   new StateSnapshotContextSynchronousImpl(
      checkpointId,
      timestamp,
      factory,
      keyGroupRange,
      getContainingTask().getCancelables());
   try {
      snapshotState(snapshotContext);
      // 设定KeyedStateRawFuture和OperatorStateRawFuture
      snapshotInProgress
      .setKeyedStateRawFuture(snapshotContext.getKeyedStateStreamFuture());
      snapshotInProgress
      .setOperatorStateRawFuture(snapshotContext.getOperatorStateStreamFuture());
            // 如果operatorStateBackend不为空,设定OperatorStateManagedFuture
      if (null != operatorStateBackend) {
         snapshotInProgress.setOperatorStateManagedFuture(
            operatorStateBackend
            .snapshot(checkpointId, timestamp, factory, checkpointOptions));
      }
      // 如果keyedStateBackend不为空,设定KeyedStateManagedFuture
      if (null != keyedStateBackend) {
         snapshotInProgress.setKeyedStateManagedFuture(
            keyedStateBackend
            .snapshot(checkpointId, timestamp, factory, checkpointOptions));
      }
   } catch (Exception snapshotException) {
    // 此处省略部分代码
   }
   return snapshotInProgress;
}

这里可以看出,原生状态和管理状态的RunnableFuture对象会有所不同

  • RawState主要通过从snapshotContext中获取的RawFuture对象 管理状态的快照操作
  • ManagedState主要通过operatorStateBackend和keyedStateBackend进行状态的管理,并根据StateBackend的不同实现将状态数据写入内存或外部文件系统中。

 

1.4. 算子状态进行快照

我们知道所有的状态快照操作都会被封装到OperatorStateManagedFuture对象中,最终通过AsyncCheckpointRunnable线程触发执行。

下面我们看AsyncCheckpointRunnable线程的定义。如代码所示,AsyncCheckpointRunnable.run()方法主要逻辑如下。

  1. 调用FileSystemSafetyNet.initializeSafetyNetForThread()方法为当前线程初始化文件系统安全网,确保数据能够正常写入。
  2. 创建TaskStateSnapshot实例:

创建jobManagerTaskOperatorSubtaskStates和localTaskOperatorSubtaskStates对应的TaskStateSnapshot实例,其中jobManagerTaskOperatorSubtaskStates用于存储和记录发送给JobManager的Checkpoint数据,localTaskOperatorSubtaskStates用于存储TaskExecutor本地的状态数据。

  1. 执行所有状态快照线程操作

遍历operatorSnapshotsInProgress集合,获取OperatorSnapshotFutures并创建OperatorSnapshotFinalizer实例,用于执行所有状态快照线程操作。在OperatorSnapshotFinalizerz中会调用FutureUtils.runIfNotDoneAndGet()方法执行KeyedState和OperatorState的快照操作。

  1. 从finalizedSnapshots中获取JobManagerOwnedState和TaskLocalState,分别存储在jobManagerTaskOperatorSubtaskStates和localTaskOperatorSubtaskStates集合中。
  2. 调用checkpointMetrics对象记录Checkpoint执行的时间并汇总到Metric监控系统中。
  3. 如果AsyncCheckpointState为COMPLETED状态,则调用reportCompletedSnapshotStates()方法向JobManager汇报Checkpoint的执行结果。
  4. 如果出现其他异常情况,则调用handleExecutionException()方法进行处理。
public void run() {
   FileSystemSafetyNet.initializeSafetyNetForThread();
   try {
      // 创建TaskStateSnapshot
      TaskStateSnapshot jobManagerTaskOperatorSubtaskStates =
         new TaskStateSnapshot(operatorSnapshotsInProgress.size());
      TaskStateSnapshot localTaskOperatorSubtaskStates =
         new TaskStateSnapshot(operatorSnapshotsInProgress.size());
      for (Map.Entry<OperatorID, OperatorSnapshotFutures> entry : 
           operatorSnapshotsInProgress.entrySet()) {
         OperatorID operatorID = entry.getKey();
         OperatorSnapshotFutures snapshotInProgress = entry.getValue();
         // 创建OperatorSnapshotFinalizer对象
         OperatorSnapshotFinalizer finalizedSnapshots =
            new OperatorSnapshotFinalizer(snapshotInProgress);
         jobManagerTaskOperatorSubtaskStates.putSubtaskStateByOperatorID(
            operatorID,
            finalizedSnapshots.getJobManagerOwnedState());
         localTaskOperatorSubtaskStates.putSubtaskStateByOperatorID(
            operatorID,
            finalizedSnapshots.getTaskLocalState());
      }
      final long asyncEndNanos = System.nanoTime();
      final long asyncDurationMillis = (asyncEndNanos - asyncStartNanos) / 1_000_000L;
      checkpointMetrics.setAsyncDurationMillis(asyncDurationMillis);
      if (asyncCheckpointState.compareAndSet(
          CheckpointingOperation.AsyncCheckpointState.RUNNING,
         CheckpointingOperation.AsyncCheckpointState.COMPLETED)) {
         reportCompletedSnapshotStates(
            jobManagerTaskOperatorSubtaskStates,
            localTaskOperatorSubtaskStates,
            asyncDurationMillis);
      } else {
         LOG.debug("{} - asynchronous part of checkpoint {} could not be 
            completed because it was closed before.",
            owner.getName(),
            checkpointMetaData.getCheckpointId());
      }
   } catch (Exception e) {
      handleExecutionException(e);
   } finally {
      owner.cancelables.unregisterCloseable(this);
      FileSystemSafetyNet.closeSafetyNetAndGuardedResourcesForThread();
   }
}

至此,算子状态数据快照的逻辑基本完成,算子中的托管状态主要借助KeyedStateBackend和OperatorStateBackend管理。

KeyedStateBackend和OperatorStateBackend都实现了SnapshotStrategy接口,提供了状态快照的方法。SnapshotStrategy根据不同类型存储后端,主要有HeapSnapshotStrategy和RocksDBSnapshotStrategy两种类型。

 

1.5. 状态数据快照持久化

这里我们以HeapSnapshotStrategy为例,介绍在StateBackend中对状态数据进行状态快照持久化操作的步骤。如代码所示,

HeapSnapshotStrategy.processSnapshotMetaInfoForAllStates()方法中定义了对KeyedState以及OperatorState的状态处理逻辑。

  1. 遍历每个StateSnapshotRestore。
  2. 调用StateSnapshotRestore.stateSnapshot()方法,此时会创建StateSnapshot对象。
  3. 将创建的StateSnapshot添加到metaInfoSnapshots和cowStateStableSnapshots集合中,完成堆内存存储类型KvState的快照操作。
private void processSnapshotMetaInfoForAllStates(
   List metaInfoSnapshots,
   Map<StateUID, StateSnapshot> cowStateStableSnapshots,
   Map<StateUID, Integer> stateNamesToId,
   Map<String, ? extends StateSnapshotRestore> registeredStates,
   StateMetaInfoSnapshot.BackendStateType stateType) {
   for (Map.Entry<String, ? extends StateSnapshotRestore> kvState :
        registeredStates.entrySet()) {
      final StateUID stateUid = StateUID.of(kvState.getKey(), stateType);
      stateNamesToId.put(stateUid, stateNamesToId.size());
      StateSnapshotRestore state = kvState.getValue();
      if (null != state) {
         final StateSnapshot stateSnapshot = state.stateSnapshot();
         metaInfoSnapshots.add(stateSnapshot.getMetaInfoSnapshot());
         cowStateStableSnapshots.put(stateUid, stateSnapshot);
      }
   }
}

 

二. CheckpointCoordinator管理Checkpoint

1. Checkpoint执行完毕后的确认过程

当StreamTask中所有的算子完成状态数据的快照操作后,Task实例会立即将TaskStateSnapshot消息发送到管理节点的CheckpointCoordinator中,并在CheckpointCoordinator中完成后续的操作。如图所示,Checkpoint执行完毕后的确认过程如下。

在这里插入图片描述

  1. 调用StreamTask.reportCompletedSnapshotStates

当StreamTask中的所有算子都完成快照操作后,会调用StreamTask.reportCompletedSnapshotStates()方法将TaskStateSnapshot等Ack消息发送给TaskStateManager。TaskStateManager封装了CheckpointCoordinatorGateway,因此可以直接和CheckpointCoordinator组件进行RPC通信。

  1. 消息传递
  • 将消息传递给CheckpointCoordinatorGateway
    TaskStateManager通过CheckpointResponder.acknowledgeCheckpoint()方法将acknowledgedTaskStateSnapshot消息传递给CheckpointCoordinatorGateway接口实现者,实际上就是JobMasterRPC服务。
  • 消息传递给CheckpointCoordinator
    JobMaster接收到RpcCheckpointResponder返回的Ack消息后,会调用SchedulerNG.acknowledgeCheckpoint()方法将消息传递给调度器。调度器会将Ack消息封装成AcknowledgeCheckpoint,传递给CheckpointCoordinator组件继续处理。
  1. 管理PendingCheckpoint

当CheckpointCoordinator接收到AcknowledgeCheckpoint后,会从pendingCheckpoints集合中获取对应的PendingCheckpoint,然后判断当前Checkpoint中是否收到AcknowledgedTasks集合所有的Task实例发送的Ack确认消息。
如果notYetAcknowledgedTasks为空,则调用completePendingCheckpoint()方法完成当前PendingCheckpoint操作,并从pendingCheckpoints集合中移除当前的PendingCheckpoint。

  1. 添加CompletedCheckpoint:

紧接着,PendingCheckpoint会转换成CompletedCheckpoint,此时CheckpointCoordinator会在completedCheckpointStore集合中添加CompletedCheckpoint。

  1. 通知Checkpoint操作结束。

CheckpointCoordinator会遍历tasksToCommitTo集合中的ExecutionVertex节点并获取Execution对象,然后通过Execution向TaskManagerGateway发送CheckpointComplete消息,通知所有的Task实例本次Checkpoint操作结束。

  1. 通知同步

当TaskExecutor接收到CheckpointComplete消息后,会从TaskSlotTable中获取对应的Task实例,向Task实例中发送CheckpointComplete消息。所有实现CheckpointListener监听器的组件或算子都会获取Checkpoint完成的消息,然后完成各自后续的处理操作。

 

2. 触发并完成Checkpoint操作

CheckpointCoordinator组件接收到Task实例的Ack消息(快照完成了?)后,会触发并完成Checkpoint操作。如代码PendingCheckpoint.finalizeCheckpoint()方法的具体实现如下。

1)向sharedStateRegistry中注册operatorStates。
2)结束pendingCheckpoint中的Checkpoint操作并生成CompletedCheckpoint3)将completedCheckpoint添加到completedCheckpointStore中,
4)从pendingCheckpoint中移除checkpointId对应的PendingCheckpoint,
并触发队列中的Checkpoint请求。
5)向所有的ExecutionVertex节点发送CheckpointComplete消息,
通知Task实例本次Checkpoint操作完成。



private void completePendingCheckpoint(PendingCheckpoint pendingCheckpoint) 
   throws CheckpointException {
   final long checkpointId = pendingCheckpoint.getCheckpointId();
   final CompletedCheckpoint completedCheckpoint;
   // 首先向sharedStateRegistry中注册operatorStates
   Map<OperatorID, OperatorState> operatorStates = 
      pendingCheckpoint.getOperatorStates();
   sharedStateRegistry.registerAll(operatorStates.values());
   // 对pendingCheckpoint中的Checkpoint做结束处理并生成CompletedCheckpoint
   try {
      try {
         completedCheckpoint = pendingCheckpoint.finalizeCheckpoint();
         failureManager.handleCheckpointSuccess(pendingCheckpoint.
            getCheckpointId());
      }
      catch (Exception e1) {
         // 如果出现异常则中止运行并抛出CheckpointExecution
         if (!pendingCheckpoint.isDiscarded()) {
             failPendingCheckpoint(pendingCheckpoint,
                                   CheckpointFailureReason.FINALIZE_CHECKPOINT_
                                        FAILURE, e1);
         }
         throw new CheckpointException("Could not finalize the pending 
                                       checkpoint " +
                                       checkpointId + '.',
                                       CheckpointFailureReason
                                       .FINALIZE_CHECKPOINT_FAILURE, e1);
      }
      // 当完成finalization后,PendingCheckpoint必须被丢弃
      Preconditions.checkState(pendingCheckpoint.isDiscarded() 
                               && completedCheckpoint != null);
      // 将completedCheckpoint添加到completedCheckpointStore中
      try {
         completedCheckpointStore.addCheckpoint(completedCheckpoint);
      } catch (Exception exception) {
         // 如果completed checkpoint存储出现异常则进行清理
         executor.execute(new Runnable() {
            @Override
            public void run() {
               try {
                  completedCheckpoint.discardOnFailedStoring();
               } catch (Throwable t) {
                  LOG.warn("Could not properly discard completed checkpoint {}.",
                           completedCheckpoint.getCheckpointID(), t);
               }
            }
         });
         throw new CheckpointException("Could not complete the pending 
                                       checkpoint " + 
                                       checkpointId + '.', 
                                       CheckpointFailureReason.
                                       FINALIZE_CHECKPOINT_FAILURE, exception);
      }
   } finally {
      // 最后从pendingCheckpoints中移除checkpointId对应的PendingCheckpoint
      pendingCheckpoints.remove(checkpointId);
      // 触发队列中的Checkpoint请求
      triggerQueuedRequests();
   }
   // 记录checkpointId
   rememberRecentCheckpointId(checkpointId);
   // 清除之前的Checkpoints
   dropSubsumedCheckpoints(checkpointId);
   // 计算和前面Checkpoint操作之间的最低延时
   lastCheckpointCompletionRelativeTime = clock.relativeTimeMillis();
   LOG.info("Completed checkpoint {} for job {} ({} bytes in {} ms).", 
            checkpointId, job,
            completedCheckpoint.getStateSize(), completedCheckpoint.getDuration());
   // 通知所有的ExecutionVertex节点Checkpoint操作完成
   final long timestamp = completedCheckpoint.getTimestamp();
   for (ExecutionVertex ev : tasksToCommitTo) {
      Execution ee = ev.getCurrentExecutionAttempt();
      if (ee != null) {
          ee.notifyCheckpointComplete(checkpointId, timestamp);
      }
   }
}

 

3. 通知CheckpointComplete给TaskExecutor

当TaskExecutor接收到来自CheckpointCoordinator的CheckpointComplete消息后,会调用Task.notifyCheckpointComplete()方法将消息传递到指定的Task实例中。Task线程会将CheckpointComplete消息通知给StreamTask中的算子。

如下代码,

/**
将notifyCheckpointComplete()转换成RunnableWithException线程并提交到Mailbox中运行,且在MailboxExecutor线程模型中获取和执行的优先级是最高的。
最终notifyCheckpointComplete()方法会在MailboxProcessor中运行。
**/

public Future<Void> notifyCheckpointCompleteAsync(long checkpointId) {
   return mailboxProcessor.getMailboxExecutor(TaskMailbox.MAX_PRIORITY).submit(
      () -> notifyCheckpointComplete(checkpointId),
      "checkpoint %d complete", checkpointId);
}

继续具体看StreamTask.notifyCheckpointComplete(),如下代码:

1)获取当前Task中算子链的算子,并发送Checkpoint完成的消息。
2)获取TaskStateManager对象,向其通知Checkpoint完成消息,这里主要调用
TaskLocalStateStore清理本地无用的Checkpoint数据。
3)如果当前Checkpoint是同步的Savepoint操作,直接完成并终止当前Task实例,并调用
resetSynchronousSavepointId()方法将syncSavepointId重置为空。

private void notifyCheckpointComplete(long checkpointId) {
   try {
      boolean success = actionExecutor.call(() -> {
         if (isRunning) {
            LOG.debug("Notification of complete checkpoint for task {}", 
               getName());
            // 获取当前Task中operatorChain所有的Operator,并通知每个Operator 
               Checkpoint执行成功的消息
            for (StreamOperator<?> operator : operatorChain.getAllOperators()) {
               if (operator != null) {
                  operator.notifyCheckpointComplete(checkpointId);
               }
            }
            return true;
         } else {
            LOG.debug("Ignoring notification of complete checkpoint for 
               not-running task {}", getName());
            return true;
         }
      });
      // 获取TaskStateManager,并通知Checkpoint执行完成的消息
      getEnvironment().getTaskStateManager().notifyCheckpointComplete(checkpointId);
      // 如果是同步的Savepoint操作,则直接完成当前Task
      if (success && isSynchronousSavepointId(checkpointId)) {
         finishTask();
         // Reset to "notify" the internal synchronous savepoint mailbox loop.
         resetSynchronousSavepointId();
      }
   } catch (Exception e) {
      handleException(new RuntimeException("Error while confirming checkpoint", e));
   }
}

算子接收到Checkpoint完成消息后,会根据自身需要进行后续的处理,默认在AbstractStreamOperator基本实现类中会通知keyedStateBackend进行后续操作。

对于AbstractUdfStreamOperator实例,会判断当前userFunction是否实现了CheckpointListener,如果实现了,则向UserFucntion通知Checkpoint执行完成的信息

例如在FlinkKafkaConsumerBase中会通过获取到的Checkpoint完成信息,将Offset提交至Kafka集群,确保消费的数据已经完成处理,详细实现可以参考FlinkKafkaConsumerBase.notifyCheckpointComplete()方法。

public void notifyCheckpointComplete(long checkpointId) throws Exception {
   super.notifyCheckpointComplete(checkpointId);
   if (userFunction instanceof CheckpointListener) {
      ((CheckpointListener) userFunction).notifyCheckpointComplete(checkpointId);
   }
}

 

三. 状态管理学习小结

通过学习状态管理的源码,我们可以再来思考下如下几个场景问题,是不是有一点“庖丁解牛”的意思!

flink中状态存在的意义是什么,涉及到哪些场景。

  1. 实时聚合:比如,计算过去一小时内的平均销售额。这时,你会需要使用到Flink的状态来存储过去一小时内的所有销售数据。
  2. 窗口操作:Flink SQL支持滚动窗口、滑动窗口、会话窗口等。这些窗口操作都需要Flink的状态来存储在窗口期限内的数据。
  3. 状态的持久化与任务恢复:实时任务挂掉之后,为了快速从上一个点恢复任务,可以使用savepoint和checkpoint。
  4. 多流join:Flink至少存储一个流中的数据,以便于在新的记录到来时进行匹配。

 

其次通过学习Flink状态管理相关源码,可以进一步了解状态管理的细节操作,为解决更加复杂的问题打下理论基础

  1. 深入理解任务运行过程中,各算子状态的流转机制;
  2. 快速定位问题:在遇到实际问题时,能够快速反应出是哪块逻辑出现了问题;
  3. 应对故障:状态管理和Flink容错机制相关,可以了解Flink发生故障时如何保证状态的一致性和可恢复性
  4. 二次开发:可以自定义状态后端,或者拓展优化已有的例如RocksDB状态后端等;
  5. 性能优化:了解了Flink是如何有效的处理和管理状态,就可以优化任务性能,减少资源消耗。

 

参考:《Flink设计与实现:核心原理与源码解析》–张利兵

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/398715.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C#】List泛型数据集如何循环移动,最后一位移动到第一位,以此类推

欢迎来到《小5讲堂》 大家好&#xff0c;我是全栈小5。 这是《C#》系列文章&#xff0c;每篇文章将以博主理解的角度展开讲解&#xff0c; 特别是针对知识点的概念进行叙说&#xff0c;大部分文章将会对这些概念进行实际例子验证&#xff0c;以此达到加深对知识点的理解和掌握。…

认识K8S

K8S K8S 的全称为 Kubernetes (K12345678S) 是一个跨主机容器编排工具 作用 用于自动部署、扩展和管理“容器化&#xff08;containerized&#xff09;应用程序”的开源系统。 可以理解成 K8S 是负责自动化运维管理多个容器化程序&#xff08;比如 Docker&#xff09;的集群…

深入理解java虚拟机---自动内存管理

2.2 运行时数据区域 Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域。这些区域有各自的用途&#xff0c;以及创建和销毁的时间&#xff0c;有的区域随着虚拟机进程的启动而一直存在&#xff0c;有些区域则是依赖用户线程的启动和结束而建立和销…

基于python社交网络大数据分析系统的设计与实现

项目&#xff1a;基于python社交网络大数据分析系统的设计与实现 摘 要 社交网络大数据分析系统是一种能自动从网络上收集信息的工具&#xff0c;可根据用户的需求定向采集特定数据信息的工具&#xff0c;本项目通过研究爬取微博网来实现社交网络大数据分析系统功能。对于采集…

Echarts图例如何将选中与未选中状态配置成不同图形

背景 使用Echarts实现功能过程中&#xff0c;由于用户感觉Echarts图例的原生图案(例如圆形)不能直观地表现出该处可以点击筛选展示&#xff0c;故设计将选中的图例与未选中的图例设置成两种不同的图形(多为勾选与未勾选)。Echarts原生功能可以配置图例图案&#xff0c;但无法直…

[C#]winform基于opencvsharp结合CSRNet算法实现低光图像增强黑暗图片变亮变清晰

【算法介绍】 "Conditional Sequential Modulation for Efficient Global Image Retouching" 是一种图像修饰方法&#xff0c;主要用于对图像进行全局的高效调整。该方法基于深度学习技术&#xff0c;通过引入条件向量来实现对图像特征的调制&#xff0c;以达到改善…

- 工程实践 - 《QPS百万级的有状态服务实践》04 - 服务一致性

​​​​​ 本文属于专栏《构建工业级QPS百万级服务》 继续上篇《QPS百万级的有状态服务实践》03 - 消息队列。目前我们的系统如图1&#xff0c;已经可以完成数据生产和更新。但是目前我们的业务是分布式集群&#xff0c;每台机器收到的的消息时间不一样&#xff0c;那每…

[经验] 玄殿社区qq堂4.2 #笔记#媒体

玄殿社区qq堂4.2 1、玄殿 玄殿&#xff0c;位于中国北京市的紫禁城内&#xff0c;是明清两代帝王祭天的场所。玄殿前殿为皇帝向神明祭拜的地方&#xff0c;中殿为祭天的主要场所&#xff0c;后殿为宋代遗址。玄殿规模庞大&#xff0c;身为中国传统建筑的代表之一&#xff0c;…

《Linux运维总结:Ubuntu22.04忘记root密码解决方案》

一、解决方法 1、首先重新启动Ubuntu系统&#xff0c;然后快速按下shift键&#xff0c;以调出grub启动菜单&#xff0c;如下图所示&#xff1a; 2、在这里我们选择第二个&#xff08;Advance options for Ubuntu&#xff09;&#xff0c;选中后按下Enter键&#xff0c;如下图所…

【经验分享】自然语言处理技术有哪些局限性和挑战?

个人认为&#xff0c;主要是两个难点&#xff1a; 1.语料&#xff0c;通常的语料很好解决&#xff0c;用爬虫从互联网上就可以采集和标注训练。但是我们接触很多项目和客户需求都是专业性很强的&#xff0c;例如&#xff1a;航天材料、电气设备、地理信息、化学试剂 等等。往往…

虹科方案 | 释放总线潜力:汽车总线离线模拟解决方案

来源&#xff1a;虹科汽车智能互联 虹科方案 | 释放总线潜力&#xff1a;汽车总线离线模拟解决方案 原文链接&#xff1a;https://mp.weixin.qq.com/s/KGv2ZOuQMLIXlOiivvY6aQ 欢迎关注虹科&#xff0c;为您提供最新资讯&#xff01; #汽车总线 #ECU #汽车网关 导读 传统的…

docker安装一系列镜像

启动docker systemctl start docker docker 启动已经停止的容器 docker start idOrName PS&#xff1a;idOrName为容器的id或者名称 1、安装mysql镜像 拉取mysql5.7的镜像 docker pull mysql:5.7 查看镜像 docker images 启动mysql #启动mysql docker run --name mysql…

【 Maven 】花式玩法之多模块项目

目录 一、认识Maven多模块项目 二、maven如何定义项目的发布策略 2.1 版本管理 2.2 构建配置 2.3 部署和发布 2.4 依赖管理 2.5 发布流程 三、使用Jenkins持续集成Maven项目 四、总结 如果你有一个多模块项目&#xff0c;并且想将这些模块发布到不同的仓库或目标位置&…

中科大计网学习记录笔记(十四):多路复用与解复用 | 无连接传输:UDP

前言&#xff1a; 学习视频&#xff1a;中科大郑烇、杨坚全套《计算机网络&#xff08;自顶向下方法 第7版&#xff0c;James F.Kurose&#xff0c;Keith W.Ross&#xff09;》课程 该视频是B站非常著名的计网学习视频&#xff0c;但相信很多朋友和我一样在听完前面的部分发现信…

gitlab 项目上线,项目上线后回滚

gitlab 项目上线&#xff0c;项目上线后回滚 1.需要自己有个gitlab项目环境&#xff0c;没有找我&#xff0c;docker-compose 一键环境启动 2.发起合并请求3.选择合并的分支4.点击创建合并&#xff0c;然后确认合并合并完成&#xff0c;进行回滚操作&#xff0c;在合并详情页…

【小样本命名实体识别】COPNER论文源码详解

COPNER: Contrastive Learning with Prompt Guiding for Few-shot Named Entity Recognition 原文与代码链接&#xff1a; https://github.com/AndrewHYC/COPNER 一、项目结构 二、代码分析 1.定义参数 配置训练环境 parser.add_argument(--gpu, default0,helpthe gpu num…

Java基于SSM的羽毛球馆管理系统,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

halide package cmake的设置方式

1 先找一个例程。里面用到halide。 这时会提示找不到package。 按照那个提示做就行。 2 把提前下载好的halide放到一个位置 3 然后设置一下那个Halide_DIR就可以了 set(Halide_DIR "${CMAKE_SOURCE_DIR}/your_path/Halide/") list(APPEND CMAKE_PREFIX_PATH ${Ha…

认识ansible,了解常用的模块

ansible的概念 Ansible是一个基于Python开发的配置管理和应用部署工具&#xff0c;现在也在自动化管理领域大放异彩。它融合了众多老牌运维工具的优点&#xff0c;Pubbet和Saltstack能实现的功能&#xff0c;Ansible基本上都可以实现。 Ansible能批量配置、部署、管理上千台主…

Tuxera NTFS2024最新中文版支持M1/M2/M3苹果全系机型

Tuxera NTFS的传输速度会受到多种因素的影响&#xff0c;包括硬件配置、文件大小、存储设备的性能等。因此&#xff0c;无法给出具体的传输速度数值。 不过&#xff0c;根据一些用户的使用经验和测试数据&#xff0c;Tuxera NTFS的传输速度通常都非常快&#xff0c;能够满足大…