人工智能学习与实训笔记(十四):Langchain之Agent

 人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客

本篇目录

0、概要

1、Agent整体架构

2、langchain中agent实现

3、Agent业务实现逻辑


0、概要

Agent是干什么的? Agent的核心思想是使用语言模型(LLM)作为推理的大脑,以制定解决问题的计划、借助工具实施动作。在agents中几个关键组件如下:

  • Agent:制定计划和思考下一步需要采取的行动。
  • Tools:解决问题的工具
  • Toolkits:用于完成特定目标所需的工具组。一个toolkit通常包含3-5个工具。
  • AgentExecutor:AgentExecutor是agent的运行时环境。这是实际调用agent并执行其选择的动作的部分。

1、Agent整体架构

代理(Agents)涉及LLM做出决策以确定要采取哪些行动,执行该行动,查看观察结果并重复执行步骤直到完成。LangChain为代理提供了标准接口,一系列可供选择的代理和端到端代理的示例。

在LLM驱动的自主代理系统中,LLM充当代理的大脑,并辅以几个关键功能:

  • 规划
    • 子目标拆解解:agent将大型任务拆解为小型的、可管理的子目标,从而能够高效处理复杂任务。
    • 反思和改进:agent可以从过去的行为中进行自我批评和自我反省。这种从错误中吸取教训,并对未来的步骤进行改进的思维可以有效提高最终结果。真种思维方式来自ReAct,其大致格式为:Thought: ...Action: ...Observation: ... (Repeated many times)。

ReAct

  • 记忆
    • 短期记忆:上下文学习是利用模型的短期记忆来学习的。
    • 长期记忆:通过利用外部向量存储和快速检索,agen可以实现长时间保留和回忆(无限)信息的能力。

  • 工具使用
    • 代理学习调用外部 API 以获取模型权重中缺少的额外信息(通常在预训练后很难更改),包括当前时讯、代码执行能力、对私有信息源的访问等。自然可以自定义工具使用,如本地向量数据库查找。

自定义工具方法

2、langchain中agent实现

langchain中agent有两种主要类型:

  • 动作代理人(Action agents):在每个时间步上,使用所有先前动作的输出决定下一个动作。
  1. 接收用户输入
  2. 决定是否使用任何工具以及工具输入
  3. 调用工具并记录输出(也称为“观察结果”)
  4. 使用工具历史记录、工具输入和观察结果决定下一步
  5. 重复步骤 3-4,直到确定可以直接回应用户
agent types
zero-shot-react-description代理使用ReAct框架,仅基于工具的描述来确定要使用的工具.此代理使用 ReAct 框架确定使用哪个工具 仅基于工具的描述。缺乏 会话式记忆。
conversational-react-description这个代理程序旨在用于对话环境中。提示设计旨在使代理程序有助于对话。 它使用ReAct框架来决定使用哪个工具,并使用内存来记忆先前的对话交互。
react-docstore

这个代理使用ReAct框架,必须提供两个工具:一个Search工具和一个Lookup工具

自问自答,会使用Google搜索工具。
self-askwith-search代理使用一个被命名为Intermediate Answer的工具。根据需要执行搜索和提问步骤,以获得最终答案。
chat-zero-shot-react-descriptionzero-shot意味着代理 (Agents) 仅在当前操作上起作用——它没有 记忆
chat-conversational-react-description该代理被设计用于会话设置。提示的目的是使代理具有帮助和会话性。它使用ReAct框架来决定使用哪个工具,并使用内存来记住以前的会话交互。
structured-chat-zero-shot-react-description能够使用多输入工具,结构化的参数输入。
openai-functions某些OpenAI模型(如gpt-3.5-turbo-0613和gpt-4-0613)已经明确地进行了微调,如果使用这些模型,可以考虑使用OpenAI Functions 的AgentType。
openai-multi-functions某些OpenAI模型(如gpt-3.5-turbo-0613和gpt-4-0613)已经明确地进行了微调,如果使用这些模型,可以考虑使用OpenAI Functions 的AgentType。
  • 计划执行代理人(Plan-and-execute agents):预先决定所有动作的完整顺序,然后按照计划执行,而不更新计划。
  1. 接收用户输入
  2. 规划要执行的全部步骤序列
  3. 按顺序执行步骤,将过去步骤的输出作为未来步骤的输入

动作代理人适用于小任务,而计划执行代理人适用于复杂或长时间运行的任务,这些任务需要保持长期目标和重点。

3、Agent业务实现逻辑

 

demo code:

from langchain.agents import initialize_agent, Tool
from langchain_wenxin.chat_models import ChatWenxin

WENXIN_APP_Key = "你自己的KEY"
WENXIN_APP_SECRET = "用你自己的"
#创建LLMChain的大模型,这里我们用的是文心大模型
llm = ChatWenxin(
    temperature=0.4,
    model="ernie-bot-turbo",
    baidu_api_key = WENXIN_APP_Key,
    baidu_secret_key = WENXIN_APP_SECRET,
    verbose=True,
    )
 
# 模拟问关于订单
def search_order(input:str) ->str:
  return "订单状态:已发货;发货日期:2023-09-15;预计送达时间:2023-09-18"
 
# 模拟问关于推荐产品
def recommend_product(input:str)->str:
  return "红色连衣裙"
 
# 模拟问电商faq
def faq(input:str)->str:
  return "7天无理由退货"
 
# 创建了一个 Tool 对象的数组,把这三个函数分别封装在了三个 Tool 对象里面
# 并且定义了描述,这个 description 就是告诉 AI,这个 Tool 是干什么用的,会根据描述做出选择
tools=[
    Tool(
        name="Search Order",func=search_order,
        description="useful for when you need to answer questions about customers orders"
    ),
    Tool(
        name="Recommend Product",func=recommend_product,
        description="useful for when you need to answer questions about product recommendations"
    ),
    Tool(
        name="FAQ",func=faq,
        description="useful for when you need to answer questions about shopping policies, like return policy, shipping policy, etc."
    ),
]
# 指定使用tools,llm,agent则是zero-shot"零样本分类",不给案例自己推理
# 而 react description,指的是根据你对于 Tool 的描述(description)进行推理(Reasoning)并采取行动(Action)
agent=initialize_agent(tools,llm,agent="zero-shot-react-description", verbose=True)


question = "我想买一件衣服,但是不知道哪个款式好看,你能帮我推荐一下吗?"
result=agent.run(question)
print(result)

result:

Action: Recommend Product
Action Input: 顾客询问衣服款式推荐

Observation: 我将根据顾客的需求和喜好推荐几个款式。

Action: 开始搜索并筛选出几个符合顾客需求的款式。

Observation: 这些款式都是比较受欢迎的,并且符合顾客的喜好。

...

Thought: 我已经找到了几个合适的款式,现在可以给出最终推荐了。

Final Answer: 根据顾客的需求和喜好,我推荐了以下几款衣服,您可以根据自己的喜好进行选择。

Final Answer: 推荐款式为:款式A、款式B和款式C。

Observation: 顾客可以根据我的推荐去选择自己喜欢的款式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/391873.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

飞行路线(分层图+dijstra+堆优化)(加上题目选数复习)

飞行路线 这一题除了堆优化和dijstra算法和链式前向星除外还多考了一个考点就是,分层图,啥叫分层图呢?简而言之就是一个三维的图,按照其题意来说有几个可以免费的点就有几层,而且这个分层的权值为0(这样就相…

嵌入式Qt 计算器界面设计

一.计算器界面设计 计算机界面程序分析&#xff1a; 需要用到的组件&#xff1a; 界面设计&#xff1a; 界面设计实现&#xff1a; 实验1&#xff1a;计算器界面设计 #include <QtGui/QApplication> #include <QWidget> //主窗口 #include <QLineEdit> //文…

由斐波那契数列探究递推与递归

斐波那契数列定义&#xff1a; 斐波那契数列大家都非常熟悉。它的定义是&#xff1a; 对于给定的整数 x &#xff0c;我们希望求出&#xff1a; f ( 1 ) f ( 2 ) … f ( x ) f(1)f(2)…f(x) f(1)f(2)…f(x) 的值。 有两种方法,分别是递推(迭代)与递归 具体解释如下图 备注…

Mysql知识点汇总

Mysql知识点汇总 1. Mysql基本场景的简单语句。2. Mysql的增删改查&#xff0c;统计表中的成绩最好的两个同学的名字&#xff0c;年级等。3&#xff1a;请使用多种方法查询每个学生的每门课分数>80的学生姓名4、order by&#xff0c;group by&#xff0c;子查询4.1、having和…

优化嵌入式系统电源管理以提高稳定性

&#xff08;本文为简单介绍&#xff0c;观点源于网络&#xff09; 在嵌入式系统的领域中&#xff0c;电源管理扮演着至关重要的角色&#xff0c;关乎系统稳定性与用户体验。如果电源管理做得不好&#xff0c;就可能导致系统不稳定、数据丢失&#xff0c;甚至硬件损坏。电源管…

springboot186人格障碍诊断系统

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

03 SS之返回JSON+UserDetail接口+基于数据库实现RBAC

1. 返回JSON 为什么要返回JSON 前后端分离成为企业应用开发中的主流&#xff0c;前后端分离通过json进行交互&#xff0c;登录成功和失败后不用页面跳转&#xff0c;而是给前端返回一段JSON提示, 前端根据JSON提示构建页面. 需求: 对于登录的各种状态 , 给前端返回JSON数据 …

《Go 简易速速上手小册》第9章:数据库交互(2024 最新版)

文章目录 9.1 连接数据库 - Go 语言的海底宝藏之门9.1.1 基础知识讲解安装数据库驱动数据库连接 9.1.2 重点案例&#xff1a;用户信息管理系统准备数据库Go 代码实现连接数据库添加新用户查询用户信息用户登录验证主函数 9.1.3 拓展案例 1&#xff1a;批量添加用户准备数据库Go…

SCI文章复现 | GEO文章套路,数据下载和批次效应处理

原文链接&#xff1a; SCI文章复现 | GEO文章套路&#xff0c;数据下载和批次效应处理https://mp.weixin.qq.com/s/KBA67EJ7cCK5NDTUzrwJ2Q 一、前言 这是2024年春节后的第一个推送教程&#xff0c;我们也给大家赠送一个福利。将前期的付费教程免费推送给大家。其实&#xff…

第13章 网络 Page741~744 asio核心类 ip::tcp::socket

1. ip::tcp::socket liburl库使用"curl*" 代表socket 句柄 asio库使用ip::tcp::socket类代表TCP协议下的socket对象。 将“句柄”换成“对象”,因为asio库是不打折扣的C库 ip::tcp::socket提供一下常用异步操作都以async开头 表13-3 tcp::socket提供的异步操作 …

乡政府|乡政府管理系统|基于Springboot的乡政府管理系统设计与实现(源码+数据库+文档)

乡政府管理系统目录 目录 基于Springboot的乡政府管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户信息管理 2、活动信息管理 3、新闻类型管理 4、新闻动态管理 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计算机毕设选题推…

BeginCTF2024 RE WP 剩下的复现

12. goforfun&#xff08;寄&#xff09; 前面是一些无关紧要的初始化 下面看到疑似rc4 虽然函数支离破碎&#xff0c;但可以看到rc4的结构&#xff0c;异或的部分做了魔改 后面似乎是base64换表&#xff0c;但脚本跑不出来&#xff0c;这里的算法没搞懂&#xff0c;只能贴一下…

layui表格中使用cascader后导致表格滚动条消失

修改前&#xff0c;受影响页面 修改后最终想要的效果 修改方法

智慧校园规划建设方案

校园信息化建设呈现智能化、应用多样化发展趋势&#xff0c;多种技术和应用交叉渗透至校园生活的各个方面&#xff0c;全面的智慧校园时代已经到来。 对智慧校园的四大应用领域分析 智慧的教学 信息共享交互&#xff1a;建立信息发布、共享、传播与交互的公共平台 教学流程…

torch.utils.data

整体架构 平时使用 pytorch 加载数据时大概是这样的&#xff1a; import numpy as np from torch.utils.data import Dataset, DataLoaderclass ExampleDataset(Dataset):def __init__(self):self.data [1, 2, 3, 4, 5]def __getitem__(self, idx):return self.data[idx]def…

Linux: GDB 调试工具

目录 概念&#xff1a; Linux 下 debug 和 release 的区别&#xff1a; GDB 的使用 &#xff1a; 激活和进入工作模式&#xff1a; 查看文件的内容&#xff1a; 运行调试的文件&#xff1a; 打断点&#xff1a; 查看断点&#xff1a; 删除断点&#xff1a; 禁用断点…

17.3.1.3 灰度

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 灰度的算法主要有以下三种&#xff1a; 1、最大值法: 原图像&#xff1a;颜色值color&#xff08;R&#xff0c;G&#xff0c;B&a…

wayland(xdg_wm_base) client 使用 dmabuf 最简实例

文章目录 前言一、zwp_linux_dmabuf_v1 协议二、wayland client 使用 zwp_linux_dmabuf_v1 协议传递dma-buf代码实例1. wayland_dmabuf.c 代码实例2. xdg-shell-protocol.c 和 xdg-shell-client-protocol.h3. linux-dmabuf-unstable-v1-client-protocol.h 和 linux-dmabuf-unst…

如何在JavaScript中使用大于和小于运算符

在你的 JavaScript 程序中&#xff0c;你经常需要比较两个值&#xff0c;以确定一个是否大于另一个或小于另一个。这就是大于和小于运算符派上用场的地方。 在本文中&#xff0c;我们将通过代码示例更详细地介绍如何使用这些运算符。 &#xff08;本文内容参考&#xff1a;ja…

Stable Diffusion 模型下载:Beautiful Realistic Asians(美丽真实的亚洲人)

本文收录于《AI绘画从入门到精通》专栏&#xff0c;专栏总目录&#xff1a;点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十 下载地址 模型介绍 Beautiful Realistic Asians&#xff08;BRA&#xff09;模型是由作者自己训练…