浅谈性能测试策略之银行测试

一、性能测试的四个方面
在一般的性能测试讨论中大家通常只围绕三个方面进行提问和总结:测试脚本如何编写,被测系统如何监控,性能瓶颈如何调优。大部分刚刚接触性能测试的人会纠结于脚本的编写,如何设置参数化、如何设置关联、何时插入检查点,各种论坛和讨论群里不断有人提出也不断有人解答。经过一段时间的经验积累后就会遇到如何监控被测系统,如何确定瓶颈并调优等问题,各种操作系统、中间件、数据库的监控和调整方法也被口耳相传。但我认为在性能测试的讨论中我们却忽略了另一个重要的方面:如何制定性能测试策略。
我认为完整的性能测试可以分为四个方面:1、测试策略制定;2、性能脚本编写;3、被测系统监控4、性能瓶颈调优。从流程来看这四个方面有先后顺序的关系,从领域来看这四个方面都有可深入研究的内容。
1、测试策略决定了性能测试如何开展,负载目标是否正确,场景模拟是否合理,好比战场上的指挥部,从全局设计战争的方向。
2、测试脚本编写决定了性能测试能否顺利执行,压力发起是否正确,好比战场上直面敌人的作战单位,需要真刀真枪的去拼杀。
3、测试监控决定了关注范围是否合理,能否发现瓶颈所在,好比潜入敌后的地下组织,要设置在关键的脉络上实时收集情况。
4、性能调优并不是所有项目都需要的,但一旦发现问题,调优就决定了测试能否完美收官,如战场上的特种兵,用专业的技能解决各种难题,非一时所能练成,所以我们大部分人都执著于此。
本文以笔者实际项目经验为基础,尝试探讨并总结银行系统性能测试策略制定过程中必经的步骤和所需考虑的内容。
二、测试需求分析
1、业务场景分析
测试银行核心系统时将柜员签到、签退、业务操作、批量等众多交易放在同一场景中执行,这样的场景在现实中是否存在?测试POS、ATM等渠道时将查询、动账类交易各按50%的比例分配,这样的比例是否正确?所有的性能测试都是以复现实际业务场景为目标。因此业务场景分析和选取务必严谨。业务场景应该从时间和空间两个角度考虑:
1.1 时间角度
分别以一年、一月、一天的角度观察,被测系统是否存在业务高峰时段。各高峰时段的重点交易是什么,交易比例如何。
1.2 空间角度
根据各分行业务特点不同,被测系统是否存在不同的高峰场景和交易,操作交易的柜员数量及一般操作时间是多少。
业务场景分析阶段应向业务、研发、运维等多部门了解被测系统需求,但就数据准确度而言,应多参考生产日志。对升级改造类系统,场景分析的数据可从老系统的生产日志中获取;对新开发的系统,分析数据可从业务上有关联的其他系统中获取,同时参考业务部门意见。典型业务场景可以不止一个,但一定要明确各场景中的交易和比例,不要模拟一个不存在的大混合!

2、负载目标计算
与项目管理中的SMART原则类似,业务场景需转换成可量化、可衡量、可实现的负载目标才能进行性能测试,而负载目标要根据不同场景分别计算。根据上阶段收集到“原始”数据,本阶段可计算或指定出各种间接和直接的负载目标值,一般负载目标多从两种角度考虑:
2.1 前端角度
在线用户数量:间接负载目标值,可理解为所有能操作被测交易的用户(柜员)数量。
平均操作时间(思考时间):间接负载目标值,与在线用户数量一同计算业务并发数量。
业务并发数量:典型场景中集中操作(不是绝对并发)交易的用户(柜员)数量。
2.2 后端角度
每秒交易数量(TPS):根据日志计算出的被测系统应承受的每秒交易数量。
交易响应时间(TRT):与TPS对应,负载场景下交易应达到的响应时间。
吞度量(Throughout):LoadRunner中吞度量是以每秒收到的字节数计算,其实TPS也是吞吐量的一种,根据不同被测系统计算对应的吞吐量。
系统并发数量:区别于业务并发数量,系统并发数量更趋近于绝对并发。对长连接系统来说系统并发就等于允许的连接数,对短连接系统来说更多取决于架构。
被测系统CPU、Mem、Disk等指标值:多为指定值,如CPU利用率不高于80%等。
前端负载目标需要通过大量、广泛的业务和日志统计才能得出,如需记录下高峰时段操作交易的用户数量、估算用户状态比例、统计操作习惯等,由于考虑到人的因素,因此前端负载很难计算精确。前端负载目标适合交易关联不大、操作用户分散、无具体业务量要求的系统,如内控管理、培训考核、网银主页等(以B/S架构为主)。
后端负载目标则比较容易计算,如当前某省对公汇兑类交易日均8万笔,则TPS=80000/(6*60*60)=3.7笔/秒(对公按6小时计算);核心系统联机交易平均响应时间在3秒以下等。后端负载目标适合交易关联度大、操作用户相对集中、有具体业务量要求的系统,以银行核心业务系统为主。
负责目标需要针对不同类型的被测系统计算合理的目标值,同时还需考虑2/8原则,未来业务量、用户量扩展等因素,这里不做赘述。
三、测试环境设计
1、硬件环境设计
大部分性能测试的硬件环境与生产相去甚远,受品牌、型号、部署方式(集群个数减少,软负载均衡代替硬负载均衡)等多种因素限制,无法直接将测试环境下的性能结果向生产环境做比例放大,因此硬件环境设计主要关注应用架构与生产环境一致(如应用、数据库服务器必须为集群方式),尽量减少性能测试中的硬件资源瓶颈(如数据库存储必须为SAN,发压与被测系统间网络带宽必须为1000M)。
2、软件环境设计
软件测试环境可从两个方面考虑:
2.1 基础配置
确认操作系统、中间件、数据库和被测系统的版本与补丁与生产环境一致,但操作系统、中间件、数据库的内部参数应根据测试硬件环境做适当调整,可参考生产中的设置比例。
数据库分区、索引等必须与生产或预计投产时一致。
2.2 外联系统
尽量减少外联系统,因为外联系统越多,测试链条越长,环境越难维护,问题越难定位。可适当在被测系统中做挡板程序,模拟与外联系统的应答,但必须保证被测系统中的逻辑分支没有被屏蔽。
3、铺底数据策略
性能铺底数据量的大小和分布情况会对测试结果产生极大影响,是场景设计阶段的重中之重!测试前对铺底数据的构造可从以下四个方面考虑:
3.1 表分区情况
确认测试环境与生产环境(或预计投产后)的表分区和索引分区规划一致,结合表清理策略确认典型场景中各分区、各表中的数据存量大小和分布情况。
3.2 表清理策略
确认生产环境(或预计投产后)的数据库表(尤其业务热表)清理和备份策略,与表分区情况配合,预铺数据并确保测试数据库表中数据存量与生产保持同一量级。
3.3 表维护策略
确认当前生产数据库表(尤其热表)和索引统计值更新、rebuild和reorg等操作的频度,在数据预铺中适当更新统计值,切勿在测试环境中频繁执行统计值更新等操作,造成虚假的性能表现。
如下图,更新统计值后表和索引的相关信息会统计正确,性能将得到一定程度的提升。

 

3.4 合理的业务数据
确认铺底数据中的柜员、行部、角色、权限、待处理任务等业务数据是否符合实际情况,切勿为图省事而创建超级行部、全能柜员和过量的待处理任务。
四、测试场景设计
1、发压数据策略
测试发压数据应在数据铺底时一同考虑,但发压数据需要和压力工具配合使用,可从以下四个方面考虑:
1.1 表分区情况
确认发压数据覆盖各表分区,且在分区中也需尽量离散,不要集中操作(主要是查询)同一范围内的数据。
1.2 表维护策略
通常生产环境中数据库表在日终结束后执行统计值更新,对应第二天营业时的数据状态,除柜员签到外,其余典型场景均发生在更靠后的营业时段,因此不要在刚刚执行完统计值更新的环境中执行正式的性能测试,建议再执行一段时间的数据预铺,模拟行部营业一段时间后的业务,这时再执行正式的性能测试,并记录结果。
1.3 被测交易分支
在能力允许的情况下应尽量多的阅读被测交易源码,或向开发人员了解程序逻辑和交易分支,确认发压数据可覆盖程序中所有重点路径。避免造成该复现的问题没有复现,该出现的瓶颈没有出现。
1.4 合理的业务数据
与发压工具配合,确认在测试过程中没有同一柜员并发操作交易,没有超出合理范围的待处理任务,以日峰TPS为负载目标时不要同时执行疲劳测试,这样会导致交易量远远大于实际。
2、测试并发设计
并发设计与负载目标紧密关联,同样可分为前端、后端两种方式:
2.1 前端角度
使用工具模拟的并发数量代表业务并发用户数量,一个并发进程或线程即模拟一个操作交易的柜员,脚本中设置thinktime模拟平均操作时间,维持典型场景中各交易的用户比例,并做等比例递增,关注此时被测系统的处理能力。但需注意的是,受thinktime和响应时间等影响,业务并发数量≠系统并发数量,所以不能在结论中说“被测系统只能承受XX并发”。且业务并发数量与在线用户数量的换算不可能完全精确,所以也不能用类似10个业务并发即代表100个在线用户的粗略换算为结论。
2.2 后端角度
使用工具模拟的并发数量不代表用户数量,也不完全等价于系统并发数量,它仅通过并发的形式对被测系统产生压力。由于后端角度更关注TPS,因此并发递增时各交易之间的并发比例可能会变化,响应时间变慢的交易会增加更多并发以维持预期TPS。
后端角度重点关注并发增加时的TPS和响应时间变化趋势,确定被测系统的处理能力。
五、测试策略维护
测试策略应在测试执行前确定,执行过程中不做大的变更,但仍需根据测试结果不断反思和维护策略,确保性能测试能够真实复现生产场景。
六、总结
工欲善其事必先利其器,在性能测试中我们的武器不仅仅是发压和调优工具,还有测试的思想!性能测试不是一个流水化作业的过程,它必须深入被测领域,对业务和技术进行全面了解才能正确执行。本文探讨并总结了银行系统性能测试策略的制定,由于经验有限,难免会有偏颇和遗漏,请批判阅读,同时对其他领域的策略制定也是抛砖引玉。

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!有需要的小伙伴可以点击下方小卡片领取  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/39059.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

结合ChatGPT制作PPT

今天看到圈友的一个AI分享,然后自己本身需要做一个分享的PPT。刚好那着帖子实战一下。先说下整体感受。 优点:制作成本确实会比较低,很熟练的话大概就是1分钟一个都有可能。整体流程是先找个第三方PPT制作网站,看下支不支持文本转…

C# 属性

文章目录 实例属性静态属性只读属性:内部只读属性:动态计算值的属性方式一:主动计算方式二:被动计算 快速生成属性的方法:输入propfull,按两下tab键,然后再按tab键一次修改有底纹的字段&#xf…

Spring后置处理器BeanFactoryPostProcessor与BeanPostProcessor源码解析

文章目录 一、简介1、BeanFactoryPostProcessor2、BeanPostProcessor 二、BeanFactoryPostProcessor 源码解析1、BeanDefinitionRegistryPostProcessor 接口实现类的处理流程2、BeanFactoryPostProcessor 接口实现类的处理流程3、总结 三、BeanPostProcessor 源码解析 一、简介…

6.7Jmeter5.1,非GUI模式,通过命令行传递线程数

原创文章,谢绝转载。 一、前提 本次做性能测试,需求是需要在Linux下的非GUI模式下执行。但用命令行执行时,线程数需要改变,为了执行方便,不需要每次都在脚本中修改线程数,那么线程数都需要通过参数传递&…

使用docker的常见bug

BUG1:磁盘被占满导致docker无法使用 docker ps 【查看docker能否正常使用】 正常的话会打印下图信息: 不正常的话打印如下图信息: journalctl -u docker 【查看docker无法正常使用的原因】,本次测试中遇到下图bug,意思是/var/l…

Bard:一个可以描述图像的人工智能

Bard 是一个大型语言模型,可以对各种提示和问题进行交流和生成类似人类的文本。它接受了大量的文字和代码训练,可以生成文本、翻译语言、编写不同类型的创意内容,并以信息丰富的方式回答你的问题。 Bard 还可以识别图像。它可以识别图像中的…

libvirt 热迁移流程及参数介绍

01 热迁移基本原理 1.1 热迁移概念 热迁移也叫在线迁移,是指虚拟机在开机状态下,且不影响虚拟机内部业务正常运行的情况下,从一台宿主机迁移到另外一台宿主机上的过程。 1.2 虚拟机数据传输预拷贝和后拷贝 预拷贝(pre-copy): …

星火认知大模型,让我感受到了国产AI的崛起

文章目录 一、申请和测试代码二、实测GPT4.0和星火认知大模型的对比2.1 测试网站2.2 经典问题提问对比2.3 代码问题提问对比2.4 论文问题对比2.5 评价 一、申请和测试代码 在我之前的一篇文章中,我分享了如何申请星火认知大模型的内测,并提供了一份可以…

python opencv 级联Haar多目标检测

一、基于OpenCV的haar分类器实现笑脸检测 1、Haar分类器介绍 🚀Haar分类器是一种基于机器学习的目标检测算法,它使用Haar特征描述图像中的目标。Haar特征是基于图像亮度的局部差异计算得出的,可以用来描述目标的边缘、角落和线条等特征。 使用…

大模型开发(七):LLM提示工程(Prompt)与思维链(CoT)

全文共6500余字,预计阅读时间约13~20分钟 | 满满干货(附案例),建议收藏! 一、LLM模型的涌现能力 在GPT没有爆火之前,一直以来的共识都是:模型的规模越大,模型在下游任务上的能力越多、越强。 LLM原始训…

QT_Creator格式化工具使用

QT_Creator代码格式化工具使用 为了确保代码格式整齐统一,使用代码格式化工具会将写的代码自动格式化以保证格式统一 Astyle: A Free, Fast, and Small Automatic Formatter for C, C, C/CLI, Objective-C, C#, and Java Source Code 一、C和C代码格式化…

Ceph 服务的运用

目录 一、资源池 pool 管理 1.创建一个 Pool 资源池 2.查看集群 Pool 信息 3.查看资源池副本的数量 4.查看 PG 和 PGP 数量 5.修改 pg_num 和 pgp_num 的数量为 128 6.修改 Pool 副本数量为 2 7.修改默认副本数为 2 8.删除 Pool 资源池 8.1修改配置文件 8.2推送 ceph…

【半监督医学图像分割 2023 CVPR】PatchCL

文章目录 【半监督医学图像分割 2023 CVPR】PatchCL摘要1. 简介2. 相关工作2.1 半监督学习2.2 对比学习 3. 方法3.1 类感知补丁采样3.2 伪标记引导对比损失3.3 总体学习目标3.4 伪标号生成与求精 4. 实验5. 结果 【半监督医学图像分割 2023 CVPR】PatchCL 论文题目:…

MySQL操作库

MySQL操作库 一.创建数据库1. 创建数据库的方式2. 创建数据库时的编码问题3. 指定编码创建数据库4. 验证校验规则对数据库的影响 二.数据库与文件系统的关系三.操纵数据库1. 查看数据库2. 删除数据库3. 修改数据库 四.数据库的备份和恢复1.数据库的备份2.数据库的恢复 五.查看连…

OpenCV——总结《车牌识别》

1.图片中的hsv hsv提取蓝色部分 # hsv提取蓝色部分 def hsv_color_find(img):img_copy img.copy()cv2.imshow(img_copy, img_copy)"""提取图中的蓝色部分 hsv范围可以自行优化cv2.inRange()参数介绍:第一个参数:hsv指的是原图第二个参…

pytest 结合logging输出日志保存至文件

API_log.py import loggingclass loger():def logering(self):# 创建logger对象logger logging.getLogger(test_logger)# 设置日志等级logger.setLevel(logging.DEBUG)# 追加写入文件a ,设置utf-8编码防止中文写入乱码test_log logging.FileHandler(test.log, a,…

11、动手学深度学习——语言模型和数据集:代码详解

我们了解了如何将文本数据映射为词元,以及将这些词元可以视为一系列离散的观测,例如单词或字符。 假设长度为 T T T的文本序列中的词元依次为 x 1 , x 2 , … , x T x_1, x_2, \ldots, x_T x1​,x2​,…,xT​。于是, x t x_t xt​&#xff08…

初识C++(上)——“C++”

各位CSDN的uu们你们好呀,小雅兰的全新专栏又来啦,这次的专栏主要介绍的是C,下面,让我们进入C的世界吧!!! 什么是C C语言是结构化和模块化的语言,适合处理较小规模的程序。对于复杂的…

【MySQL】根据MVCC和Read View分析事务的四种隔离级别在读写场景分别是如何体现其隔离性的

目录 一、数据库并发的三种场景 二、读写场景的MVCC 1、3个(4个)记录隐藏列字段 2、undo log(撤销日志) 3、模拟MVCC场景 3.1update场景 3.2delete场景 3.3insert 3.4select场景 4、Read View 5、RR和RC的区别 5.1当…

AI制图工具丨Midjourney产品功能介绍

了解如何使用Discord上的Midjourney Bot通过简单的文本提示创建自定义图像 Midjourney是一款AI制图工具,只要关键字,就能透过AI算法生成相对应的图片,只需要不到一分钟。 可以选择不同画家的艺术风格,例如安迪华荷、达芬奇、达利…