论文阅读 - Non-Local Spatial Propagation Network for Depth Completion

文章目录

  • 1 概述
  • 2 模型说明
    • 2.1 局部SPN
    • 2.2 非局部SPN
    • 2.3 结合置信度的亲和力学习
      • 2.3.1 传统正则化
      • 2.3.2 置信度引导的affinity正则化
  • 3 效果
    • 3.1 NYU Depth V2
    • 3.2 KITTI Depth Completion
  • 参考资料

1 概述

本文提出了一种非局部的空间传播网络用于深度图补全,简称为NLSPN。
(1)为什么需要深度图补全?
在AR、无人机控制、自动驾驶和运动规划等应用当中,需要知道物体的稠密深度信息。现有的大部分深度传感器,如雷达、RGB-D相机等,可以提供RGB图片和准确的稀疏深度图,未提供的部分需要通过算法进行补全。
这种通过稀疏的深度图和其他信息(如RGB信息)对深度图进行补全的算法称为深度补全算法

(2)现有的技术有哪些缺陷?
在这篇论文出现之前的深度补全算法中,直接深度补全算法采用RGB或RGB-D图像,并使用深度卷积神经网络(CNN)直接预测稠密深度。与传统的算法相比,这些直接预测算法表现出更好的性能,然而,它们仍然会在深度边界附近生成模糊的深度图
因此,最近基于亲和力(affinity)的空间传播方法缓解了这种现象。通过学习局部邻域的亲和力并迭代地细化深度预测,使最终的稠密深度变得更加准确。尽管如此,以前的传播网络有一个明确的限制,即它们具有用于传播的固定局部邻域配置。固定局部邻居通常具有不相关的信息,不应与参考信息混合,尤其是在深度边界上。因此,它们在深度补全任务中仍然存在混合深度问题。
这里混合深度的意思就是在预测时物体边界部分的深度将前景与背景的深度插值了,从点云图上看的话,就会看到如同瀑布一般的噪声。

(3)本文提出的方法有什么创新点?
为了解决混合深度的问题,本文提出了一种非局部空间传播网络(NLSPN),该网络预测每个像素的非局部邻居(即信息应该来自哪里)和空间变化的亲和力(即应该传播多少信息)。通过放宽固定局部邻域配置,所提出的网络可以避免与其他相邻对象关联的不相关局部邻域。因此,本文的方法本质上对混合深度问题具有鲁棒性。也就是边界部分的前景点只参考位于前景的邻域点,边界部分的背景点只参考位于背景的领域点。
此外,基于对传统亲和力归一化方案的分析,提出了一种可学习的亲和力归一化方法,该方法具有更大的亲和力组合表示能力。它支持更准确的亲和力估计,从而提高了非本地邻居之间的传播。为了进一步提高对输入异常值和不准确的初始预测的鲁棒性,本文预测初始稠密深度的置信度,并将其纳入亲和归一化中,以最小化不可靠深度值的传播。
这里的初始稠密深度是网络根据RGB图和稀疏深度图预测的稠密深度图,后面会具体说明。
NYU Depth V2数据集上效果示例图

图1-1 NYU Depth V2数据集上效果示例图

图1-1中,(a)表示NLSPN预测的某几个像素的邻域示例,可以看出范围很广,且都在同一个物体上,(b)表示网络预测的初始稠密深度图,©表示使用局部空间传播修正(b)的结果,(d)表示使用非局部空间传播修正(b)的结果,可以看出边界部分明显优于©,(e)是真值。

2 模型说明

2.1 局部SPN

SPN的目标是通过传播具有相应亲和力的邻居值(即相似性)来估计缺失值并细化置信度低的值。SPN已被用作各种计算机视觉应用中的关键模块之一。SPN非常适用于深度补全任务,并已经证明了与直接回归算法相比,具有更优越的效果。
本节首先简要回顾局部SPN及其局限性。
X = ( x m , n ) ∈ R M × N X=(x_{m,n}) \in R^{M \times N} X=(xm,n)RM×N表示被SPN更新的2D深度图, x m , n x_{m,n} xm,n表示在像素 ( m , n ) (m,n) (m,n)位置的值。
在局部SPN中,对于每个像素点 x m , n x_{m,n} xm,n在时间步 t t t的迭代方式如式2-1所示。

x m , n t = w m , n c x m , n t − 1 + ∑ ( i , j ) ∈ N m , n w m , n i , j x i , j t − 1 (2-1) x_{m,n}^t = w_{m,n}^c x_{m,n}^{t-1} + \sum_{(i, j) \in N_{m,n}} w_{m,n}^{i,j} x_{i,j}^{t-1} \tag{2-1} xm,nt=wm,ncxm,nt1+(i,j)Nm,nwm,ni,jxi,jt1(2-1)

其中, ( m , n ) (m,n) (m,n)表示当前点, ( i , j ) (i,j) (i,j)表示邻域点, w m , n c w_{m,n}^c wm,nc表示当前点的亲和力, w m , n i , j w_{m,n}^{i,j} wm,ni,j表示邻域点和当前点之间的亲和力,也就是相似性。
式2-1右侧的第一项为当前点会被保留多少,右侧为邻域传播多少,当前点权重和邻域点权重的关系如式2-2所示。

w m , n c = 1 − ∑ ( i , j ) ∈ N m , n w m , n i , j (2-2) w_{m,n}^c = 1 - \sum_{(i, j) \in N_{m,n}} w_{m,n}^{i,j} \tag{2-2} wm,nc=1(i,j)Nm,nwm,ni,j(2-2)

原始的SPN的每个方向是三路的,一共上下左右四个方向,更新是有顺序的,因此无法对所有方向同时更新,其top-to-bottom方向的邻域点表示为式2-3,其他方向不赘述。

N m , n S = { x m + p , n + q ∣ p = − 1 , q ∈ { − 1 , 0 , 1 } } (2-3) N_{m,n}^S = \{ x_{m+p, n+q} | p=-1,q\in \{-1,0,1\} \} \tag{2-3} Nm,nS={xm+p,n+qp=1,q{1,0,1}}(2-3)

CSPN是对于SPN的改进,可以同时对四个方向进行传播,更加高效,其邻域点表示为式2-4。

N m , n C S = { x m + p , n + q ∣ p = ∈ { − 1 , 0 , 1 } , q ∈ { − 1 , 0 , 1 } , ( p , q ) ≠ ( 0 , 0 ) } (2-4) N_{m,n}^{CS} = \{ x_{m+p, n+q} | p=\in \{-1,0,1\},q\in \{-1,0,1\}, (p,q) \neq (0,0) \} \tag{2-4} Nm,nCS={xm+p,n+qp=∈{1,0,1},q{1,0,1},(p,q)=(0,0)}(2-4)

不同SPN可视化示意图如图2-1所示。
不同SPN可视化示意图

图2-1 不同SPN可视化示意图

从图2-1(e)和(f)不难看出,对于物体的边界部分,固定的SPN会将两个物体的深度混合计算,也就是会产生混合深度问题,而NLSPN只对同一个物体的深度混合计算。

2.2 非局部SPN

固定的局部邻域配置忽略了局部区域的物体/深度分布,因此会产生将前景和背景深度值混淆的深度值。虽然预测得到的亲和力大小可以适当缓解不相关深度值之间深度混合的问题,但是无法避免错误的预测,还是会使用不合适的邻域点。
NLSPN通过预测邻域点来解决上述问题,预测邻域点用到了较大范围的颜色和深度信息,如式2-5所示,需要注意的是p和q是实数,也就是非局部邻域可以是亚像素精度的。亚像素精度也就意味着坐标是分数坐标,为了更好地将分数坐标纳入训练,在传播过程中采用了可微采样。

N m , n N L = { x m + p , n + q ∣ ( p , q ) ∈ f ϕ ( I , D , m , n ) , p , q ∈ R } (2-5) N_{m,n}^{NL} = \{ x_{m+p, n+q} | (p,q) \in f_{\phi}(I, D, m, n), p, q \in R \} \tag{2-5} Nm,nNL={xm+p,n+q(p,q)fϕ(I,D,m,n),p,qR}(2-5)

其中, I I I是RGB图像, D D D是稀疏深度图, f ϕ ( ⋅ ) f_{\phi}(\cdot) fϕ()表示非局部邻域点预测网络,为每个像素点预测 K K K个邻域。

网络为encoder-decoder结构,预测初始深度图、置信度图、非局部邻域点,邻域点的原始亲和力。该网络的encoder-decoder结构建立在残差网络的基础上,从RGB和稀疏深度图像中提取高级特征。此外,采用encoder-decoder特征连接策略来同时利用低级特征和高级特征。
然后以迭代的方式进行非局部空间传播。整体流程如图2-2所示。

算法整体流程图

图2-2 算法整体流程图

作者注意到非局部传播(图2-2的右上角部分)可以通过可变形卷积有效地计算。因此,每次传播都需要一个简单的可变形卷积前向步骤和亲和力归一化。

训练时,损失函数使用的是 L 1 L_1 L1 L 2 L_2 L2损失,如下式2-6所示。

L r e c o n ( D g t , D p r e d ) = 1 ∣ V ∣ ∑ v ∈ V ∣ d v g t − d v p r e d ∣ ρ (2-6) L_{recon}(D^{gt}, D^{pred}) = \frac{1}{|V|} \sum_{v \in V} |d_{v}^{gt} - d_{v}^{pred}|^{\rho} \tag{2-6} Lrecon(Dgt,Dpred)=V1vVdvgtdvpredρ(2-6)

其中, D g t D^{gt} Dgt是真实深度值, D p r e d D^{pred} Dpred是深度值的预测结果, d v d_v dv表示在像素 v v v的深度值, V V V表示有真值的像素集合, ∣ V ∣ |V| V表示有真值像素的数量。当 ρ = 1 \rho = 1 ρ=1时,表示的是 L 1 L_1 L1损失,当 ρ = 2 \rho = 2 ρ=2时,表示的是 L 2 L_2 L2损失。值得注意的是,本文没有对置信度进行任何监督,因为没有置信度的真值。

2.3 结合置信度的亲和力学习

传统的基于亲和力的算法使用颜色统计或手动特征,现在发现采用深度学习有更好的效果,在这些方法中,亲和力正则化对于稳定的传播有着重要的作用。作者说明了传统的正则化方法和其局限性,并提出在归一化过程中加入初始预测的置信度,以抑制传播过程中不可靠的深度值的负面影响。

2.3.1 传统正则化

根据其他文献,传播稳定的前提是邻域权重和小于等于1。根据式2-1,这等价于 ∑ ( i , j ) ∈ N m , n ∣ w m , n i , j ∣ < 1 \sum_{(i, j) \in N_{m,n}} |w_{m,n}^{i,j}| < 1 (i,j)Nm,nwm,ni,j<1
现有的正则化方式包括以下几种:
(1)Abs-Sum
Abs-Sum计算公式如下式2-7所示。

w m , n i , j = w ^ m , n i , j / ∑ ( i , j ) ∈ N m , n ∣ w ^ m , n i , j ∣ (2-7) w_{m,n}^{i,j} = \hat{w}_{m,n}^{i,j} / \sum_{(i, j) \in N_{m,n}} |\hat{w}_{m,n}^{i,j}| \tag{2-7} wm,ni,j=w^m,ni,j/(i,j)Nm,nw^m,ni,j(2-7)

正则化亲和力的可行组合偏向于狭窄的高维空间,以两个邻域点为例, ∣ w 1 ∣ + ∣ w 2 ∣ = 1 |w_1|+|w_2| = 1 w1+w2=1,如图2-3(a)所示。

(2)Abs-Sum*
为发挥 ∣ w 1 ∣ + ∣ w 2 ∣ < 1 |w_1|+|w_2| < 1 w1+w2<1的优势,Abs-Sum*只有当 ∑ i ∣ w i ∣ > 1 \sum_{i} |w_i| > 1 iwi>1时使用式2-7。但还是有很大的概率和Abs-Sum一样,且随着邻域点 K K K的增大,越来越接近于Abs-Sum,如图2-3(b)所示。

(3)Tanh-C
一种减小亲和力偏向于狭窄高位空间的方法是限制原始亲和力值的大小,比如使用 t a n h ( ⋅ ) tanh(\cdot) tanh()限制到, [ − 1 / C , 1 / C ] [-1/C, 1/C] [1/C,1/C],如式2-8所示。

w m , n i , j = t a n h ( w ^ m , n i , j ) / C , C ≥ K (2-8) w_{m,n}^{i,j} = tanh(\hat{w}_{m,n}^{i,j}) / C, C \geq K \tag{2-8} wm,ni,j=tanh(w^m,ni,j)/C,CK(2-8)

其中, C ≥ K C \geq K CK保证了 ∑ ( i , j ) ∈ N m , n ∣ w m , n i , j ∣ < 1 \sum_{(i, j) \in N_{m,n}} |w_{m,n}^{i,j}| < 1 (i,j)Nm,nwm,ni,j<1

Tanh-C牺牲了边缘值,但使得亲和力分布更加平衡。不过 C C C的最佳值会随着训练任务的变化而变化,比如邻居数量、激活函数、数据集等,如图2-3©所示。

(4)Tanh- γ \gamma γ-Abs-Sum*
为了确定任务的最佳值 C C C,作者建议学习归一化因子和非局部亲和力,并且只在 ∑ ( i , j ) ∈ N m , n ∣ w m , n i , j ∣ > 1 \sum_{(i, j) \in N_{m,n}} |w_{m,n}^{i,j}| > 1 (i,j)Nm,nwm,ni,j>1时进行正则化,其式如式2-9所示。

w m , n i , j = t a n h ( w ^ m , n i , j ) / γ , γ m i n ≤ γ ≤ γ m a x (2-9) w_{m,n}^{i,j} = tanh(\hat{w}_{m,n}^{i,j}) / \gamma, \gamma_{min} \leq \gamma \leq \gamma_{max} \tag{2-9} wm,ni,j=tanh(w^m,ni,j)/γ,γminγγmax(2-9)

图2-3(d)是当 γ = 1.25 时的例子 \gamma=1.25时的例子 γ=1.25时的例子。与Abs−Sum∗相比,Tanh- γ \gamma γ-Abs-Sum*仍然有机会避免归一化,它允许我们探索更多样化亲和力的邻域点。

不同正则化方式示意图

图2-3 不同正则化方式示意图

2.3.2 置信度引导的affinity正则化

已有的传播框架,亲和力描述了像素之间的相关性并提供传播的指导,这是基于像素之间的相似性来做的。每个像素同等对待,认为都是可信的。但是,深度补全任务中,不同像素点加权需要考虑可信度。

本文将预测置信度图并与亲和力正则化结合,结合了置信度的Tanh- γ \gamma γ-Abs-Sum*如2-10所示。

w m , n i , j = c i , j ⋅ t a n h ( w ^ m , n i , j ) / γ (2-10) w_{m,n}^{i,j} = c^{i,j} \cdot tanh(\hat{w}_{m,n}^{i,j}) / \gamma \tag{2-10} wm,ni,j=ci,jtanh(w^m,ni,j)/γ(2-10)

其中, c i , j ∈ [ 0 , 1 ] c^{i,j} \in [0,1] ci,j[0,1]表示在像素 ( i , j ) (i,j) (i,j)处的置信度。

有无置信度传播的效果对比图

图2-4 有无置信度传播的效果对比图

3 效果

3.1 NYU Depth V2

NLSPN在NYU Depth V2数据集与其他模型的指标对比结果如下表3-1所示。

表3-1 NYU Depth V2数据集模型指标对比表

NYU Depth V2数据集模型指标对比表
图3-1是在NYU Depth V2数据集不同模型的可视化效果对比图。
NYU Depth V2数据集模型效果对比图

图3-1 NYU Depth V2数据集模型效果对比图

3.2 KITTI Depth Completion

NLSPN在KITTI Depth Completion数据集与其他模型的指标对比结果如下表3-2所示。

表3-2 KITTI Depth Completion数据集模型指标对比表

KITTI Depth Completion数据集模型指标对比表

图3-2是在KITTI Depth Completion数据集不同模型的可视化效果对比图。其中,(a)和(b)是输入,分别是RGB和稀疏深度图;©是CSPN结果;(d)是DepthNormal结果;(e)是DeepLiDAR结果;(f)是FuseNet结果;(g)是CSPN++结果;(h)是本文模型的结果。
在这里插入图片描述

图3-1 NYU Depth V2数据集模型效果对比图

参考资料

[1] Non-Local Spatial Propagation Network for Depth Completion
[2] https://github.com/zzangjinsun/NLSPN_ECCV20.git

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/389337.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

手把手教你免费搭建自己的红包封面商城​

您好&#xff0c;我是码农飞哥&#xff08;wei158556&#xff09;&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。&#x1f4aa;&#x1f3fb; 1. Python基础专栏&#xff0c;基础知识一网打尽&#xff0c;9.9元买不了吃亏&#xff0c;买不了上当。 Python从入门到精通…

【Linux】调试工具gdb:初识

前言 今天来记录并学习一下gdb的使用 背景 程序的发布方式有两种&#xff0c;debug模式和release模式Linux gcc/g出来的二进制程序&#xff0c;默认是release模式要使用gdb调试&#xff0c;必须在源代码生成二进制程序的时候, 加上 -g 选项 使用 gdb FileName 退出&#x…

爱上JVM——常见问题:JVM组成(一)

1 JVM组成 1.1 JVM由那些部分组成&#xff0c;运行流程是什么&#xff1f; 难易程度&#xff1a;☆☆☆ 出现频率&#xff1a;☆☆☆☆ JVM是什么 Java Virtual Machine Java程序的运行环境&#xff08;java二进制字节码的运行环境&#xff09; 好处&#xff1a; 一次编写&…

qt-C++笔记之打印所有发生的事件

qt-C笔记之打印所有发生的事件 code review! 文章目录 qt-C笔记之打印所有发生的事件1.ChatGPT问答使用 QApplication 的 notify 方法使用 QObject 的 event 方法 2.使用 QObject 的 event 方法3.使用 QApplication 的 notify 方法 1.ChatGPT问答 在Qt C中&#xff0c;若要打…

相机图像质量研究(22)常见问题总结:CMOS期间对成像的影响--光学串扰

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…

C# VS2022+WinForm+Oracle19.3+Excel,根据数据库表定义书生成SQL

目标&#xff1a; 用Excel写数据库的表的定义书&#xff0c;用该工具生成SQL&#xff0c;在客户端执行&#xff0c;把表结构导入数据库&#xff0c;生成真正的表 Github代码下载 目录 0.完成下面开发环境的准备1 操作系统Win11 专业版 21H22 oracle 19.33 Visual Studio Commun…

C语言第二十五弹---字符函数和字符串函数(上)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 目录 1、字符分类函数 2、字符转换函数 3、strlen的使用和模拟实现 4、strcpy 的模拟实现 5、strcat 的模拟实现 6、strcmp 的模拟实现 7、strncpy 函数的使用 总结…

高效货运 - 华为OD统一考试(C卷)

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 200分 题解&#xff1a; Java / Python / C 题目描述 老李是货运公司承运人&#xff0c;老李的货车额定载货重量为wt&#xff1b;现有两种货物&#xff0c;货物A单件重量为wa&#xff0c;单件运费利润为pa&#xff0c…

Fluke ADPT 连接器新增对福禄克万用 Fluke 15B Max 的支持

所需设备&#xff1a; 1、Fluke ADPT连接器&#xff1b; 2、Fluke 15B Max&#xff1b; Fluke 15B Max拆机图&#xff1a; 显示界面如下图&#xff1a; 并且可以将波形导出到EXCEL: 福禄克万用表需要自己动手改造&#xff01;&#xff01;&#xff01;

【C++第二阶段-重载-关系运算符函数调用】

你好你好&#xff01; 以下内容仅为当前认识&#xff0c;可能有不足之处&#xff0c;欢迎讨论&#xff01; 文章目录 关系运算符-重载-判断相等函数调用运算符重载 关系运算符-重载-判断相等 场景&#xff1a;两个对象&#xff0c;若有年龄和性别的不同&#xff0c;是否可以直…

AI数据中心网络架构需求:400/800G光模块

随着AI技术和相关应用的不断发展&#xff0c;大模型、大数据和AI计算能力在AI发展中的重要性日益凸显。大模型和数据集构成AI研究的软件基础&#xff0c;而AI算力是关键的基础设施。在本文中&#xff0c;我们将探讨AI发展对数据中心网络架构的影响。 Fat-Tree数据中心网络架构…

Spring Boot结合MinIO 实现文件切片极速上传!

本文将介绍如何使用Spring Boot和MinIO实现文件切片极速上传技术&#xff0c;通过将大文件分割成小片段并并行上传&#xff0c;显著提高文件上传速度。 2 文件切片上传简介 文件切片上传是指将大文件分割成小的片段&#xff0c;然后通过多个请求并行上传这些片段&#xff0c;最…

【C++】实现Date类的各种运算符重载

上一篇文章只实现了operator操作符重载&#xff0c;由于运算符较多&#xff0c;该篇文章单独实现剩余所有的运算符重载。继续以Date类为例&#xff0c;实现运算符重载&#xff1a; 1.Date.h #pragma once#include <iostream> #include <assert.h>using namespace …

相机图像质量研究(24)常见问题总结:CMOS期间对成像的影响--摩尔纹

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…

【面试】盘点10个高频的前端算法题,你全都会了吗?

前言 &#x1f4eb; 大家好&#xff0c;我是南木元元&#xff0c;热爱技术和分享&#xff0c;欢迎大家交流&#xff0c;一起学习进步&#xff01; &#x1f345; 个人主页&#xff1a;南木元元 现在前端的面试中&#xff0c;算法出现的频率越来越高了&#xff0c;大厂更是必考算…

GPIO八种工作模式

目录 一、推挽输出 二、开漏输出 三、复用推挽输出 四、复用开漏输出 五、浮空输入 六、上拉输入 七、下拉输入 八、模拟输入 GPIO八种配置模式&#xff0c;原理和使用场景&#xff0c;硬件原理如下图&#xff1a; 一、推挽输出 1、 原理 当控制栅极为低电平时&#x…

【Visual Studio】使用空格替换制表符

环境 VS版本&#xff1a;VS2013 问题 如何生成空格替换制表符&#xff1f; 步骤 1、菜单 工具->选项&#xff0c;文本编辑器->C/C->制表符&#xff0c;选择【插入空格】。

free pascal:fpwebview 组件通过 JSBridge 调用本机TTS

从 https://github.com/PierceNg/fpwebview 下载 fpwebview-master.zip 简单易用。 先请看 \fpwebview-master\README.md cd \lazarus\projects\fpwebview-master\demo\js_bidir 学习 js_bidir.lpr &#xff0c;编写 js_bind_speak.lpr 如下&#xff0c;通过 JSBridge 调用本…

php基础学习之可变函数(web渗透测试关键字绕过rce于回调函数)

可变函数 看可变函数的知识点之前&#xff0c;蒟蒻博主建议你先去看看php的可变变量&#xff0c;会更加方便理解&#xff0c;在本篇博客中的第五块知识点->php基础学习之变量-CSDN博客 描述 当一个变量所保存的值刚好是一个函数的名字&#xff08;由函数命名规则可知该值必…

挑战杯 python区块链实现 - proof of work工作量证明共识算法

文章目录 0 前言1 区块链基础1.1 比特币内部结构1.2 实现的区块链数据结构1.3 注意点1.4 区块链的核心-工作量证明算法1.4.1 拜占庭将军问题1.4.2 解决办法1.4.3 代码实现 2 快速实现一个区块链2.1 什么是区块链2.2 一个完整的快包含什么2.3 什么是挖矿2.4 工作量证明算法&…