《合成孔径雷达成像算法与实现》Figure6.12

clc
clear
close all

参数设置
距离向参数设置
R_eta_c = 20e3;             % 景中心斜距
Tr = 2.5e-6;                % 发射脉冲时宽
Kr = 20e12;                 % 距离向调频率
alpha_os_r = 1.7;           % 距离过采样率
Nrg = 320;                  % 距离线采样数
距离向参数计算
Bw = abs(Kr)*Tr;            % 距离信号带宽
Fr = alpha_os_r*Bw;         % 距离向采样率
Nr = round(Fr*Tr);          % 距离采样点数(脉冲序列长度)
方位向参数设置
c = 3e8;                    % 光速
Vr = 150;                   % 等效雷达速度
Vs = Vr;                    % 卫星平台速度
Vg = Vr;                    % 波束扫描速度
f0 = 5.3e9;                 % 雷达工作频率
Delta_f_dop = 80;           % 多普勒带宽
alpha_os_a = 1.7;          % 方位过采样率
Naz = 256;                  % 距离线数
theta_r_c = 3.5;            % 波束斜视角
方位向参数计算
lambda = c/f0;              % 雷达工作波长
eta_c = -R_eta_c*sind(theta_r_c)/Vr;
                            % 波束中心偏移时间
f_eta_c = 2*Vr*sind(theta_r_c)/lambda;
                            % 多普勒中心频率
La = 0.886*2*Vs*cosd(theta_r_c)/Delta_f_dop;
                            % 实际天线长度
Fa = alpha_os_a*Delta_f_dop;% 方位向采样率
Ta = 0.886*lambda*R_eta_c/(La*Vg*cosd(theta_r_c));
                            % 目标照射时间
R0 = R_eta_c*cosd(theta_r_c);
                            % 最短斜距
Ka = 2*Vr^2*cosd(theta_r_c)^3/(lambda*R0);
                            % 方位向调频率
theta_bw = 0.886*lambda/La; % 方位向3dB波束宽度
theta_syn = Vs/Vg*theta_bw; % 合成角
Ls = R_eta_c*theta_syn;     % 合成孔径
其他参数计算
rho_r = c/2/Bw;             % 距离向分辨率 
rho_a = La/2;               % 方位向分辨率
Trg = Nrg/Fr;               % 发射脉冲宽度
Taz = Naz/Fa;               % 目标照射时间
d_t_tau = 1/Fr;             % 距离向采样时间间隔
d_t_eta = 1/Fa;             % 方位向采样时间间隔
d_f_tau = Fr/Nrg;           % 距离向采样频率间隔
d_f_eta = Fa/Naz;           % 方位向采样频率间隔

目标设置
设置目标点距离景中心的距离
A_r = -50;A_a = -50;
B_r = -50;B_a = +50;
C_r = +50;C_a = B_a+(C_r-B_r)*tand(theta_r_c);
坐标
A_x = R0+A_r;A_y = A_a;
B_x = R0+B_r;B_y = B_a;
C_x = R0+C_r;C_y = C_a;
N_position = [A_x,A_y;B_x,B_y;C_x,C_y];
波束中心穿越时刻
N_target = 3;
Target_eta_c = zeros(1,N_target);
for i = 1:N_target
    Delta_Y = N_position(i,2)-N_position(i,1)*tand(theta_r_c);
    Target_eta_c(i) = Delta_Y/Vs;
end
绝对零多普勒时刻
Target_eta_0 = zeros(1,N_target);
for i = 1:N_target
    Target_eta_0(i) = N_position(i,2)/Vs; 
end

变量设置
时间变量:以景中心绝对零多普勒时刻作为方位向零点
t_tau = (-Trg/2:d_t_tau:Trg/2-d_t_tau)+2*R_eta_c/c;     % 距离时间变量
t_eta = (-Taz/2:d_t_eta:Taz/2-d_t_eta)+eta_c;           % 方位时间变量
r_tau = (t_tau*c/2)*cosd(theta_r_c);                    % 最近距离变量
频率变量
f_tau = fftshift(-Fr/2:d_f_tau:Fr/2-d_f_tau);           % 距离频率变量
f_tau = f_tau-round((f_tau-0)/Fr)*Fr;                   % 将频率折叠入(-Fr/2,Fr/2),距离可观测频率变量
f_eta = fftshift(-Fa/2:d_f_eta:Fa/2-d_f_eta);           % 方位频率变量
f_eta = f_eta-round((f_eta-f_eta_c)/Fa)*Fa;             % 将频率折叠入f_eta_c附近(-Fa/2,Fa/2)范围,方位可观测频率变量
坐标设置
[t_tauX,t_etaY] = meshgrid(t_tau,t_eta);                % 距离时间X轴,方位时间Y轴
[f_tauX,f_etaY] = meshgrid(f_tau,f_eta);                % 距离频域X轴,方位频域Y轴
[r_tauX,f_eta_Y] = meshgrid(r_tau,f_eta);               % 距离长度X轴,方位频域Y轴

信号设置,原始回波生成
tic                                                     % 计时,与toc搭配使用
wait_title = waitbar(0,'开始生成回波数据 ...'); 
pause(1);
st_tt = zeros(Naz,Nrg);
for i = 1:N_target
    R_eta = sqrt(N_position(i,1)^2+Vs^2*(t_etaY-Target_eta_0(i)).^2);
                                                        % 瞬时斜距,还有近似公式可以尝试
    A0 = [1,1,1,1]*exp(+1j*0);                          % 后向散射系数
    wr = (abs(t_tauX-2*R_eta/c)<=Tr/2);                 % 距离向包络
    wa = sinc(0.886*atan(Vs*(t_etaY-Target_eta_c(i))/N_position(i,1))/theta_bw).^2;
                                                        % 方位向包络,用波束穿越时刻
%     wa = sinc(0.886*(atan(Vs*(t_etaY-Target_eta_0(i))/N_position(i,1))+theta_r_c)/theta_bw).^2;
    st_tt_target = A0(i)*wr.*wa.*exp(-1j*4*pi*f0*R_eta/c)...
                               .*exp(1j*pi*Kr*(t_tauX-2*R_eta/c).^2);
    st_tt = st_tt+st_tt_target;
    pause(0.001);
    time = toc;
    Display_Data = num2str(roundn(i/N_target*100,-1));
    Display_Str  = ['Computation Progress',Display_Data,'%',' --- ',...
                    'Using Time: ',num2str(time)];
    waitbar(i/N_target,wait_title,Display_Str);         % 三参数:进度,句柄,展示的话
end
pause(1);
close(wait_title);
toc
% figure('Name','原始数据回波'),subplot(221)
% imagesc(real(st_tt))
% xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(a)实部')
% subplot(222)
% imagesc(imag(st_tt))
% xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(b)虚部')
% subplot(223)
% imagesc(abs(st_tt))
% xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(c)幅度')
% subplot(224)
% imagesc(angle(st_tt))
% xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(d)相位')

一次距离压缩
方式三:根据脉冲频谱特性直接在频域生成频域匹配滤波器
window = kaiser(Nrg,2.5)';              % 时域窗
Window = fftshift(window);              % 频域窗
% figure,plot(window)
% figure,plot(Window)
Hrf = (abs(f_tauX)<=Bw/2).*Window.*exp(1j*pi*f_tauX.^2/Kr);
Sf_ft = fft(st_tt,Nrg,2);
Srf_tf = Sf_ft.*Hrf;
srt_tt = ifft(Srf_tf,Nrg,2);
% figure('Name','一次距离压缩'),subplot(121)
% imagesc(real(srt_tt))
% xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(a)实部')
% subplot(122)
% imagesc(abs(srt_tt))
% xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(b)虚部')

方位向FFT
Saf_tf = fft(srt_tt,Naz,1);
% figure('Name','方位FFT'),subplot(121)
% imagesc(real(Saf_tf)),set(gca,'YDir','normal')
% xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(a)实部')
% subplot(122)
% imagesc(abs(Saf_tf)),set(gca,'YDir','normal')
% xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(b)幅度')

距离徙动校正——8点插值
RCM = lambda^2*r_tauX.*f_etaY.^2/(8*Vr^2);
RCM = R0+RCM-R_eta_c;                       % 将距离徙动量转换到原图坐标系下
offset = RCM/rho_r;                         % 将距离徙动量转换为距离单元偏移量
计算插值表
x_tmp = repmat(-4:3,[16,1]);                % 插值长度
x_tmp = x_tmp+repmat(((1:16)/16).',[1,8]);   % 量化位移
% figure,imagesc(repmat(((1:16)/16)',[1,8])),colorbar
% figure,imagesc(repmat(-4:3,[16,1])),colorbar
% figure,imagesc(repmat(((1:16)/16)',[1,8])+repmat(-4:3,[16,1])),colorbar
hx = sinc(x_tmp);                           % 生成插值核
% % figure,imagesc(hx)
hx = kaiser(8,2.5)'.*hx;
hx = hx./sum(hx,2);                         % 归一化
插值表校正
tic
wait_title = waitbar(0,'开始进行距离徙动校正');
pause(1)
Srcmf_tf_8 = zeros(Naz,Nrg);
for a_tmp = 1:Naz
    for r_tmp = 1:Nrg
        offset_ceil = ceil(offset(a_tmp,r_tmp));
        offset_frac = round((offset_ceil-offset(a_tmp,r_tmp))*16);
        if offset_frac == 0
            Srcmf_tf_8(a_tmp,r_tmp) = Saf_tf(a_tmp,ceil(mod(r_tmp+offset_ceil-0.1,Nrg)));
        else
            Srcmf_tf_8(a_tmp,r_tmp) = Saf_tf(a_tmp,ceil(mod((r_tmp+offset_ceil-4:r_tmp+offset_ceil+3)-0.1,Nrg)))*hx(offset_frac,:).';
        end
    end
    pause(0.001)
    time = toc;
    Display_Data = num2str(roundn(a_tmp/Naz*100,-1));
    Display_Str  = ['Computation Progress ',Display_Data,'%',' --- ',...
                    'Using Time: ',num2str(time)];
    waitbar(a_tmp/Naz,wait_title,Display_Str)
end
pause(1)
close(wait_title)
toc
% figure('Name','8点距离徙动校正'),subplot(121)
% imagesc(real(Srcmf_tf_8)),set(gca,'YDir','normal')
% xlabel('距离时间(采样点)'),ylabel('方位频率(采样点)'),title('(a)实部')
% subplot(122)
% imagesc(abs(Srcmf_tf_8)),set(gca,'YDir','normal')
% xlabel('距离时间(采样点)'),ylabel('方位频率(采样点)'),title('(b)幅度')

方位压缩
Ka = 2*Vr^2*cosd(theta_r_c)^3./(lambda*r_tauX);
Haf = exp(-1j*pi*f_etaY.^2./Ka);                    % 匹配滤波器
Haf_offset = exp(-1j*2*pi*f_etaY*eta_c);            % 时间补偿项
Soutf_tf = Srcmf_tf_8.*Haf.*Haf_offset;
soutt_tt = ifft(Soutf_tf,Naz,1);
% save('D:\BaiduSyncdisk\博士\合成孔径雷达成像算法实现与仿真\soutt_tt','soutt_tt')

绘图
H1 = figure();
set(H1,'position',[100,100,600,300]); 
subplot(121),imagesc(real(soutt_tt))
xlabel('距离时间(采样点)→'),ylabel('←方位时间(采样点)'),title('(a)实部')
subplot(122),imagesc( abs(soutt_tt))
xlabel('距离时间(采样点)→'),ylabel('←方位时间(采样点)'),title('(b)幅度')

点目标分析
% figure,imagesc(abs(fftshift(fft2(soutt_tt))))
[row,col] = size(soutt_tt);
Sout = fftshift(fft2(soutt_tt));
figure,imagesc(abs(Sout))
% Sout_buling = zeros(16*row,16*col);
% Sout_buling(8*row+1:9*row,8*col+1:9*col) = Sout;
Sout_buling = upsample(soutt_tt,16);
figure,imagesc(abs(Sout_buling))
% sout_1 = ifft(Sout_buling,[],2);
% sout_2 = ifft(Sout_buling,[],1);
% figure,imagesc(abs(fftshift(sout_2)))
sout_3 = ifft2(Sout_buling);
figure,imagesc(abs(sout_3))
len = 16*16;
cut = -len/2:len/2-1;
start_tt = sout_3(2772+cut,3013+cut);
figure,imagesc(abs(start_tt))
figure('Name','1'),contour(abs(start_tt),15)

len = 32;
cut = -len/2:len/2-1;
start_tt = soutt_tt(round(Naz/2+1+N_position(3,2)/Vr*Fa)+cut, ...
                    round(Nrg/2+1+2*(N_position(3,1)-R0)/c*Fr)+cut);
% start_tt = soutt_tt(169+cut, ...
%                     182+cut);
figure
imagesc(abs(start_tt))
Start_ff = fft2(start_tt);
figure
imagesc(abs(Start_ff)),set(gca,'YDir','normal')
figure
imagesc(abs(fftshift(Start_ff))),set(gca,'YDir','normal')


% Start = zeros(5*16,5*16);
% Start(2*16+1:3*16,2*16+1:3*16) = Start_ff;
% figure
% imagesc(abs(Start))
% start = ifft2(ifftshift(Start));
% contour(abs(start),15)
% figure
% imagesc(abs(start))
len = 16;
cut = -len/2:len/2-1;
[aa,p] = max(abs(start_tt));
[bb,q] = max(max(abs(start_tt)));
start_tt_1 = start_tt(p(q)+cut,q+cut);
figure,imagesc(abs(start_tt_1))
Start_ff_1 = fft2(start_tt_1);
figure,imagesc(abs(Start_ff_1)),set(gca,'YDir','normal')
figure,imagesc(abs(fftshift(Start_ff_1))),set(gca,'YDir','normal')
% 高频补零
Start_buling_1 = zeros(len,16*len);
Start_buling_2 = zeros(16*len,16*len);
% 行补零
for i = 1:len
    [~,I] = min(Start_ff_1(i,:));
    Start_buling_1(i,1:I) = Start_ff_1(i,1:I);
    Start_buling_1(i,16*len-(len-I)+1:16*len) = Start_ff_1(i,I+1:end);
end
% 列补零
for i = 1:16*len
    [~,I] = min(Start_buling_1(:,i));
    Start_buling_2(1:I,i) = Start_buling_1(1:I,i);
    Start_buling_2(16*len-(len-I)+1:16*len,i) = Start_buling_1(I+1:end,i);
end

start_tf_1 = ifft(Start_buling_2,[],2);
start_tt_2 = ifft(start_tf_1,[],1);

figure('Name','高频补零'),imagesc(abs(start_tt_2))
contour(abs(start_tt_2),15)

Start_up = upsample(start_tt_1,16);
figure,imagesc(abs(Start_up))
figure,contour(abs(Start_up),15)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/389256.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自定义类型详解 结构体,位段,枚举,联合

目录 结构体 1.不完全声明 2.结构体的自引用 3.定义与初始化 4.结构体内存对齐与结构体类型的大小 结构体嵌套问题 位段 1.什么是位段&#xff1f; 2.位段的内存分配 枚举 1.枚举类型的定义 2.枚举的优点 联合&#xff08;共同体&#xff09; 1.联合体类型的声明以…

第4讲引入JWT前后端交互

引入JWT前后端交互 Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准&#xff08;(RFC 7519)&#xff1b; JWT就是一段字符串&#xff0c;用来进行用户身份认证的凭证&#xff0c;该字符串分成三段【头部、载荷、签证】 后端接口测试&…

七天爆肝flink笔记

一.flink整体介绍及wordcount案例代码 1.1整体介绍 从上到下包含有界无界流 支持状态 特点 与spark对比 应用场景 架构分层 1.2示例代码 了解了后就整个demo吧 数据源准备 这里直接用的文本文件 gradle中的主要配置 group com.example version 0.0.1-SNAPSHOTjava {sour…

[office] EXCEL怎么制作大事记图表- #学习方法#其他

EXCEL怎么制作大事记图表? 在宣传方面&#xff0c;经常会看到一些记录历史事件、成长历程的图&#xff0c;非常的直观、好看(如下图所示)。那么是怎么做到呢呢?这里我们介绍一下用EXCEL表格快速做出事件记录图的方法。 1、首先&#xff0c;做出基础表格(如下图一所示)。表格…

猫头虎分享已解决Bug ‍ || Go Error: redeclared as imported package name

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

紫微斗数双星组合:廉贞天府在辰戌

文章目录 前言内容总结 前言 紫微斗数双星组合&#xff1a;廉贞天府在辰戌 内容 紫微斗数双星组合&#xff1a;廉贞天府在辰戌 性格分析 廉贞天府同坐辰、戌宫&#xff0c;若无煞星冲破&#xff0c;为“天府朝垣格”&#xff0c;也为“府相朝垣格”&#xff0c;富贵双全&am…

前端常见的设计模式

说到设计模式&#xff0c;大家想到的就是六大原则&#xff0c;23种模式。这么多模式&#xff0c;并非都要记住&#xff0c;但作为前端开发&#xff0c;对于前端出现率高的设计模式还是有必要了解并掌握的&#xff0c;浅浅掌握9种模式后&#xff0c;整理了这份文章。 六大原则&…

【Linux 04】编辑器 vim 详细介绍

文章目录 &#x1f308; Ⅰ 基本概念&#x1f308; Ⅱ 基本操作1. 进入 / 退出 vim2. vim 模式切换 &#x1f308; 命令模式1. 光标的移动2. 复制与粘贴3. 剪切与删除4. 撤销与恢复 &#x1f308; Ⅲ 底行模式&#x1f308; Ⅳ 异常退出 &#x1f308; Ⅰ 基本概念 vim 是一种…

第7章 Page446~449 7.8.9智能指针 std::unique_ptr

“unique_ptr”是“独占式智能指针” 名字透露身份&#xff0c;“unique_ptr”是“独占式智能指针”。使用它管理前面的O类指针&#xff1a; 演示1&#xff1a; 例中 p 是一个智能指针。其中的“<O>”指明它所指向的数据类型是“O”。除了创建方法不太一样&#xff0c;…

SAP PP学习笔记- 豆知识02 - 品目要谁来维护?怎么决定更不更新品目的数量金额?

其实都是在品目类型的Customize中设定的。 咱们这里简单试着说一下什么场景使用。 1&#xff0c;SAP中品目有很多View&#xff0c;都要由哪些部门来维护呢&#xff1f; 其实就是谁用谁维护呗。 在新建一个品目的时候&#xff0c;品目Type本身就决定了该品目要由哪些部门来维…

gem5 garnet 合成流量: packet注入流程

代码流程 下图就是全部. 剩下文字部分是细节补充,但是内容不变: bash调用python,用python配置好configuration, 一个cpu每个tick运行一次,requestport发出pkt. bash 启动 python文件并配置 ./build/NULL/gem5.debug configs/example/garnet_synth_traffic.py \--num-cpus…

【C++】---类和对象(上)入门

一、类的定义 1.那么众所周知&#xff0c;C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解的步骤&#xff0c;通过函数的调用来逐步解决问题 2.而C是基于面向对象的&#xff0c;关注的是对象&#xff0c;将一件事情拆分成不同的对象&#xff0c;靠对象之间交…

消息队列RabbitMQ-使用过程中面临的问题与解决思路

消息队列在使用过程中会出现很多问题 首先就是消息的可靠性&#xff0c;也就是消息从发送到消费者接收&#xff0c;消息在这中间过程中可能会丢失 生产者到交换机的过程、交换机到队列的过程、消息队列中、消费者接收消息的过程中&#xff0c;这些过程中消息都可能会丢失。 …

【数据结构】LRU Cache

文章目录 LRUCache LRUCache 1. LRUCache是一种缓存的替换技术&#xff0c;在CPU和main memory之间根据计算机的局部性原理&#xff0c;往往会采用SRAM技术来构建CPU和主存之间的高速缓存&#xff0c;DRAM(dynamic random access memory)用于构建主存&#xff0c;LRUCache这种…

【正点原子STM32】TIMER 定时器(软件定时原理、定时器定时原理、分类和特性、基本定时器(影子寄存器和U事件和UI中断))

一、定时器概述 1.1、软件定时原理1.2、定时器定时原理1.3、STM32定时器分类1.4、STM32定时器特性表1.5、STM32基本、通用、高级定时器的功能整体区别 二、基本定时器 2.1、基本定时器简介2.2、基本定时器框图2.3、定时器计数模式及溢出条件2.4、定时器中断实验相关寄存器2.…

【数据结构】二叉树的三种遍历

目录 一、数据结构 二、二叉树 三、如何遍历二叉树 一、数据结构 数据结构是计算机科学中用于组织和存储数据的方式。它定义了数据元素之间的关系以及对数据元素的操作。常见的数据结构包括数组、链表、栈、队列、树、图等。 数组是一种线性数据结构&#xff0c;它使用连续…

[Vue warn]: Duplicate keys detected: ‘1‘. This may cause an update error.

[Vue warn]: Duplicate keys detected: ‘1‘. This may cause an update error.——> Vue报错&#xff0c;key关键字不唯一&#xff1a; 解决办法&#xff1a;修改一下重复的id值&#xff01;&#xff01;&#xff01;

C#系列-使用 Minio 做图片服务器实现图片上传 和下载(13)

1、Minio 服务器下载和安装 要在本地安装和运行 MinIO 服务器&#xff0c;你可以按照以下 步骤进行操作&#xff1a; 1. 访问 MinIO 的官方网站&#xff1a;https://min.io/&#xff0c;然后 点击页面上的”Download”按钮。 2. 在下载页面上&#xff0c;选择适合你操作系统的 …

(16)Hive——企业调优经验

前言 本篇文章主要整理hive-3.1.2版本的企业调优经验&#xff0c;有误请指出~ 一、性能评估和优化 1.1 Explain查询计划 使用explain命令可以分析查询计划&#xff0c;查看计划中的资源消耗情况&#xff0c;定位潜在的性能问题&#xff0c;并进行相应的优化。 explain执行计划…

[C#] 如何调用Python脚本程序

为什么需要C#调用python&#xff1f; 有以下几个原因需要C#调用Python&#xff1a; Python拥有丰富的生态系统&#xff1a;Python有很多强大的第三方库和工具&#xff0c;可以用于数据科学、机器学习、自然语言处理等领域。通过C#调用Python&#xff0c;可以利用Python的生态系…