一.flink整体介绍及wordcount案例代码
1.1整体介绍
从上到下包含有界无界流 支持状态 特点 与spark对比 应用场景 架构分层
1.2示例代码
了解了后就整个demo吧
数据源准备 这里直接用的文本文件
gradle中的主要配置
group = 'com.example'
version = '0.0.1-SNAPSHOT'
java {
sourceCompatibility = '11'
}
repositories {
mavenCentral()
}
dependencies {
implementation group: 'org.apache.flink', name: 'flink-streaming-java', version: '1.17.0'
implementation group: 'org.apache.flink', name: 'flink-clients', version: '1.17.0'
}
代码
package com.example.flinktest.test;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
public class FlinkTurotial1_17 {
public static void main(String[] args) throws Exception {
//todo 1.创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
//todo 2.读取数据
DataStreamSource<String> stringDataStreamSource = env.readTextFile("D:\\juege\\code\\hope-backend\\opentech\\src\\main\\resources\\flinkTextSource.txt");
//todo 3.进行数据处理 先 flatmap 再 keyby 再 sum 再打印输出
stringDataStreamSource.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
@Override
public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) throws Exception {
String[] words = s.split(" ");
for (String word : words) {
if ("".equals(word)) {
continue;
}
collector.collect(new Tuple2<>(word, 1));
}
}
}).keyBy(0).sum(1).print();
//todo 4.执行任务
env.execute("pantouyu");
}
}
运行后控制台效果如下