《合成孔径雷达成像算法与实现》Figure6.17

% rho_r = c/(2*Fr)而不是rho_r = c/(2*Bw)
% Hsrcf exp函数里忘记乘pi了
clc
clear
close all

参数设置
距离向参数设置
R_eta_c = 20e3;             % 景中心斜距
Tr = 2.5e-6;                % 发射脉冲时宽
Kr = 20e12;                 % 距离向调频率
alpha_os_r = 1.2;           % 距离过采样率
Nrg = 320;                  % 距离线采样数
距离向参数计算
Bw = abs(Kr)*Tr;            % 距离信号带宽
Fr = alpha_os_r*Bw;         % 距离向采样率
Nr = round(Fr*Tr);          % 距离采样点数(脉冲序列长度)
方位向参数设置
c = 3e8;                    % 光速
Vr = 150;                   % 等效雷达速度
Vs = Vr;                    % 卫星平台速度
Vg = Vr;                    % 波束扫描速度
f0 = 5.3e9;                 % 雷达工作频率
Delta_f_dop = 80;           % 多普勒带宽
alpha_os_a = 1.25;          % 方位过采样率
Naz = 256;                  % 距离线数
theta_r_c = 21.9;            % 波束斜视角
方位向参数计算
lambda = c/f0;              % 雷达工作波长
eta_c = -R_eta_c*sind(theta_r_c)/Vr;
                            % 波束中心偏移时间
f_eta_c = 2*Vr*sind(theta_r_c)/lambda;
                            % 多普勒中心频率
La = 0.886*2*Vs*cosd(theta_r_c)/Delta_f_dop;
                            % 实际天线长度
Fa = alpha_os_a*Delta_f_dop;% 方位向采样率
Ta = 0.886*lambda*R_eta_c/(La*Vg*cosd(theta_r_c));
                            % 目标照射时间
R0 = R_eta_c*cosd(theta_r_c);
                            % 最短斜距
Ka = 2*Vr^2*cosd(theta_r_c)^3/(lambda*R0);
                            % 方位向调频率
theta_bw = 0.886*lambda/La; % 方位向3dB波束宽度
theta_syn = Vs/Vg*theta_bw; % 合成角
Ls = R_eta_c*theta_syn;     % 合成孔径
其他参数计算
rho_r = c/2/Fr;             % 距离向分辨率 
rho_a = La/2;               % 方位向分辨率
Trg = Nrg/Fr;               % 发射脉冲宽度
Taz = Naz/Fa;               % 目标照射时间
d_t_tau = 1/Fr;             % 距离向采样时间间隔
d_t_eta = 1/Fa;             % 方位向采样时间间隔
d_f_tau = Fr/Nrg;           % 距离向采样频率间隔
d_f_eta = Fa/Naz;           % 方位向采样频率间隔

目标设置
设置目标点距离景中心的距离
A_r = -50;A_a = -50;
B_r = -50;B_a = +50;
C_r = +50;C_a = B_a+(C_r-B_r)*tand(theta_r_c);
坐标
A_x = R0+A_r;A_y = A_a;
B_x = R0+B_r;B_y = B_a;
C_x = R0+C_r;C_y = C_a;
N_position = [A_x,A_y;B_x,B_y;C_x,C_y];
波束中心穿越时刻
N_target = 3;
Target_eta_c = zeros(1,N_target);
for i = 1:N_target
    Delta_Y = N_position(i,2)-N_position(i,1)*tand(theta_r_c);
    Target_eta_c(i) = Delta_Y/Vs;
end
绝对零多普勒时刻
Target_eta_0 = zeros(1,N_target);
for i = 1:N_target
    Target_eta_0(i) = N_position(i,2)/Vs; 
end

变量设置
时间变量:以景中心绝对零多普勒时刻作为方位向零点
t_tau = (-Trg/2:d_t_tau:Trg/2-d_t_tau)+2*R_eta_c/c;     % 距离时间变量
t_eta = (-Taz/2:d_t_eta:Taz/2-d_t_eta)+eta_c;           % 方位时间变量
r_tau = (t_tau*c/2)*cosd(theta_r_c);                    % 最近距离变量
频率变量
f_tau = fftshift(-Fr/2:d_f_tau:Fr/2-d_f_tau);           % 距离频率变量
f_tau = f_tau-round((f_tau-0)/Fr)*Fr;                   % 将频率折叠入(-Fr/2,Fr/2),距离可观测频率变量
f_eta = fftshift(-Fa/2:d_f_eta:Fa/2-d_f_eta);           % 方位频率变量
f_eta = f_eta-round((f_eta-f_eta_c)/Fa)*Fa;             % 将频率折叠入f_eta_c附近(-Fa/2,Fa/2)范围,方位可观测频率变量
坐标设置
[t_tauX,t_etaY] = meshgrid(t_tau,t_eta);                % 距离时间X轴,方位时间Y轴
[f_tauX,f_etaY] = meshgrid(f_tau,f_eta);                % 距离频域X轴,方位频域Y轴
[r_tauX,f_eta_Y] = meshgrid(r_tau,f_eta);               % 距离长度X轴,方位频域Y轴

信号设置,原始回波生成
tic                                                     % 计时,与toc搭配使用
wait_title = waitbar(0,'开始生成回波数据 ...'); 
pause(1);
st_tt = zeros(Naz,Nrg);
for i = 1:N_target
    R_eta = sqrt(N_position(i,1)^2+Vs^2*(t_etaY-Target_eta_0(i)).^2);
                                                        % 瞬时斜距,还有近似公式可以尝试
    A0 = [1,1,1,1]*exp(+1j*0);                          % 后向散射系数
    wr = (abs(t_tauX-2*R_eta/c)<=Tr/2);                 % 距离向包络
    wa = sinc(0.886*atan(Vs*(t_etaY-Target_eta_c(i))/N_position(i,1))/theta_bw).^2;
                                                        % 方位向包络,用波束穿越时刻
%     wa = sinc(0.886*(atan(Vs*(t_etaY-Target_eta_0(i))/N_position(i,1))+theta_r_c)/theta_bw).^2;
    st_tt_target = A0(i)*wr.*wa.*exp(-1j*4*pi*f0*R_eta/c)...
                               .*exp(1j*pi*Kr*(t_tauX-2*R_eta/c).^2);
    st_tt = st_tt+st_tt_target;
    pause(0.001);
    time = toc;
    Display_Data = num2str(roundn(i/N_target*100,-1));
    Display_Str  = ['Computation Progress',Display_Data,'%',' --- ',...
                    'Using Time: ',num2str(time)];
    waitbar(i/N_target,wait_title,Display_Str);         % 三参数:进度,句柄,展示的话
end
pause(1);
close(wait_title);
toc

H = figure();
set(H,'position',[100,100,600,600]);
subplot(221)
imagesc(real(st_tt))
xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(a)实部')
subplot(222)
imagesc(imag(st_tt))
xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(b)虚部')
subplot(223)
imagesc(abs(st_tt))
xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(c)幅度')
subplot(224)
imagesc(angle(st_tt))
xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(d)相位')

一次距离压缩
方式三:根据脉冲频谱特性直接在频域生成频域匹配滤波器
window = kaiser(Nrg,2.5)';              % 时域窗
Window = fftshift(window);              % 频域窗
% 计算滤波器
Hrf = (abs(f_tauX)<=Bw/2).*Window.*exp(+1j*pi*f_tauX.^2/Kr);
Sf_ft = fft(st_tt,Nrg,2);
Srf_ft = Sf_ft.*Hrf;
srt_tt = ifft(Srf_ft,Nrg,2);

figure('Name','一次距离压缩'),subplot(121)
imagesc(real(srt_tt))
xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(a)实部')
subplot(122)
imagesc(abs(srt_tt))
xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(b)虚部')

% 方位向FFT
% Saf_tf = fft(srt_tt,Naz,1);
% 
% figure('Name','方位FFT'),subplot(121)
% imagesc(real(Saf_tf)),set(gca,'YDir','normal')
% xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(a)实部')
% subplot(122)
% imagesc(abs(Saf_tf)),set(gca,'YDir','normal')
% xlabel('距离时间(采样点)'),ylabel('方位时间(采样点)'),title('(b)幅度')
二次距离压缩
D0 = sqrt(1-lambda^2*f_eta_c^2/(4*Vr^2));
Kscr = 2*Vr^2*f0^3*D0^3/(c*R0*f_eta_c^2);
Hsrcf = exp(-1j*pi*f_tauX.^2/Kscr);

Srf_ff = fft(Srf_ft,Naz,1);
% Srf_tf = ifft(Srf_ff,Nrg,2);

% S_ff = fft(Saf_tf,Nrg,2);
S_ff_scr = Srf_ff.*Hsrcf;
S_tf_scr = ifft(S_ff_scr,[],2);
s_tt_scr = ifft2(S_ff_scr);

figure,imagesc(abs(S_tf_scr)),set(gca,'YDir','normal')

% figure
% subplot(121),imagesc(abs(Srf_tf)),set(gca,'YDir','normal')
% subplot(122),imagesc(abs(S_tf_scr)),set(gca,'YDir','normal')

% S_ff_1 = fft(Srf_tf,Naz,1);
% S_ff_scr_1 = S_ff_1.*Hsrcf;
% S_tf_scr = ifft(S_ff_scr_1,[],2);
%  绘图
H5 = figure('Name','二次距离压缩后');
set(H5,'position',[100,100,600,300]); 
subplot(121),imagesc(real(s_tt_scr))
%  axis([0 Naz,0 Nrg])
xlabel('距离时间(采样点)→'),ylabel('←方位时间(采样点)'),title('(a)实部')
subplot(122),imagesc( abs(s_tt_scr))
%  axis([0 Naz,0 Nrg])
xlabel('距离时间(采样点)→'),ylabel('←方位时间(采样点)'),title('(b)幅度')

距离徙动校正——8点插值
% RCM = lambda^2*r_tauX.*f_etaY.^2/(8*Vr^2);
% RCM = R0+RCM-R_eta_c;                       % 将距离徙动量转换到原图坐标系下
D = sqrt(1-lambda^2*f_etaY.^2/(4*Vr^2));              % 距离多普勒域中的徙动因子
RCM = r_tauX./D-r_tauX;
RCM = R0+RCM-R_eta_c;                       % 将距离徙动量转换到原图坐标系下
offset = RCM/rho_r;                         % 将距离徙动量转换为距离单元偏移量
计算插值表
x_tmp = repmat(-4:3,[16,1]);                % 插值长度
x_tmp = x_tmp+repmat(((1:16)/16).',[1,8]);   % 量化位移
% figure,imagesc(repmat(((1:16)/16)',[1,8])),colorbar
% figure,imagesc(repmat(-4:3,[16,1])),colorbar
% figure,imagesc(repmat(((1:16)/16)',[1,8])+repmat(-4:3,[16,1])),colorbar
hx = sinc(x_tmp);                           % 生成插值核
% % figure,imagesc(hx)
hx = kaiser(8,2.5)'.*hx;
hx = hx./sum(hx,2);                         % 归一化
插值表校正
Srcmf_tf_8 = zeros(Naz,Nrg);
for a_tmp = 1:Naz
    for r_tmp = 1:Nrg
        offset_ceil = ceil(offset(a_tmp,r_tmp));
        offset_frac = round((offset_ceil-offset(a_tmp,r_tmp))*16);
        if offset_frac == 0
            Srcmf_tf_8(a_tmp,r_tmp) = S_tf_scr(a_tmp,ceil(mod(r_tmp+offset_ceil-0.1,Nrg)));
        else
            Srcmf_tf_8(a_tmp,r_tmp) = S_tf_scr(a_tmp,ceil(mod((r_tmp+offset_ceil-4:r_tmp+offset_ceil+3)-0.1,Nrg)))*hx(offset_frac,:).';
        end
    end
end

figure('Name','8点距离徙动校正'),subplot(121)
imagesc(real(Srcmf_tf_8)),set(gca,'YDir','normal')
xlabel('距离时间(采样点)'),ylabel('方位频率(采样点)'),title('(a)实部')
subplot(122)
imagesc(abs(Srcmf_tf_8)),set(gca,'YDir','normal')
xlabel('距离时间(采样点)'),ylabel('方位频率(采样点)'),title('(b)幅度')

方位压缩
Ka = 2*Vr^2*cosd(theta_r_c)^3./(lambda*r_tauX);
Haf = exp(-1j*pi*f_etaY.^2./Ka);                    % 匹配滤波器
Haf_offset = exp(-1j*2*pi*f_etaY*eta_c);            % 时间补偿项
Soutf_tf = Srcmf_tf_8.*Haf.*Haf_offset;
soutt_tt = ifft(Soutf_tf,Naz,1);

绘图
H1 = figure();
set(H1,'position',[100,100,600,300]); 
subplot(121),imagesc(real(soutt_tt))
xlabel('距离时间(采样点)→'),ylabel('←方位时间(采样点)'),title('(a)实部')
subplot(122),imagesc( abs(soutt_tt)),colorbar
xlabel('距离时间(采样点)→'),ylabel('←方位时间(采样点)'),title('(b)幅度')

点目标分析
len = 16;
cut = -len/2:len/2-1;
sout_tt_C = soutt_tt(round(Naz/2+1+N_position(3,2)/Vr*Fa)+cut, ...
                    round(Nrg/2+1+2*(N_position(3,1)-R0)/c*Fr)+cut);
figure,imagesc(abs(sout_tt_C)),title('切片')

Sout_ff_C = fft2(sout_tt_C);
figure,imagesc(abs(Sout_ff_C))

Start_ff_1 = Sout_ff_C;

% 高频补零
Start_buling_1 = zeros(len,16*len);
Start_buling_2 = zeros(16*len,16*len);
% 行补零
for i = 1:len
    [~,I] = min(Start_ff_1(i,:));
    Start_buling_1(i,1:I) = Start_ff_1(i,1:I);
    Start_buling_1(i,16*len-(len-I)+1:16*len) = Start_ff_1(i,I+1:end);
end
% 列补零
for i = 1:16*len
    [~,I] = min(Start_buling_1(:,i));
    Start_buling_2(1:I,i) = Start_buling_1(1:I,i);
    Start_buling_2(16*len-(len-I)+1:16*len,i) = Start_buling_1(I+1:end,i);
end

start_tf_1 = ifft(Start_buling_2,[],2);
start_tt_2 = ifft(start_tf_1,[],1);

figure('Name','高频补零'),imagesc(abs(start_tt_2))
contour(abs(start_tt_2),15)

% p为行索引,q为列索引
[aa,p] = max(start_tt_2);
[bb,q] = max(max(start_tt_2));

% 距离切片
start_r = abs(start_tt_2(p(q),:));
start_r = db(start_r/max(start_r));
figure,plot(start_r),ylim([-35,0])

% 方位切片
start_a = abs(start_tt_2(:,q));
start_a = db(start_a/max(start_a));
figure,plot(start_a),ylim([-35,0])

% 距离向相位
start_r_p = rad2deg(angle(start_tt_2(p(q),:)));
figure,plot(start_r_p),xlim([0,16*len])

% 方位向相位
start_a_p = rad2deg(angle(start_tt_2(:,q)));
figure,plot(start_a_p),xlim([0,16*len])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/388766.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

B端系统从0到1:有几步,其中需求分析要做啥?

一款B系统从无到有都经历了啥&#xff0c;而其中的需求分析又要做什么&#xff1f;贝格前端工场给老铁们做一下分析&#xff0c;文章写作不易&#xff0c;如果咱们有界面设计和前端开发需求&#xff0c;别忘了私信我呦&#xff0c;开始了。 一、B端系统从0到1都有哪些要走的步骤…

绝地求生:“觉醒之旅”通行证曝光,西游主题通行证及成长型武器即将上线

随着27赛季即将结束&#xff0c;有关28.1版本的皮肤及通行证内容也被爆料出来&#xff0c;本次通行证为工坊通行证&#xff0c;和去年四圣兽通行证为同一类型&#xff0c;将于2月7日更新至正式服 除了通行证获取工坊币还是可以开箱获取并兑换一些奖励 先看通行证 四个套装应该分…

如何给最小化安装的CentOS主机装个远程桌面?

正文共&#xff1a;888 字 18 图&#xff0c;预估阅读时间&#xff1a;1 分钟 前面我们领微软云Azure的免费主机时&#xff08;白嫖党618福利&#xff01;来Azure领200美刀&#xff01;外加云主机免费用一年&#xff01;&#xff09;&#xff0c;发现“有资格免费试用服务”的主…

【VScode配置HTML如何编译 基础 JavaScript 实例】

基础 JavaScript 实例 VScode用JavaScript输出文本用JavaScript改变HTML元素一个外部JavaScript VScode 打开扩展搜索 右键看到即可 用JavaScript输出文本 <!DOCTYPE html> <html> <head> <meta charset"utf-8"> </head> <body…

《Python入门到精通》webbrowser模块详解,Python webbrowser标准库,Python浏览器控制工具

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;小白零基础《Python入门到精通》 webbrowser模块详解 1、常用操作2、函数大全webbrowser.open() 打开浏览器webbro…

C++面向对象程序设计-北京大学-郭炜【课程笔记(二)】

C面向对象程序设计-北京大学-郭炜【课程笔记&#xff08;二&#xff09;】 1、结构化程序设计结构化程序设计的不足 2、面向对象的程序设计2.1、面向对象的程序设计2.2、从客观事物抽象出类2.3、对象的内存分配2.4、对象之间的运算2.5、使用类的成员变量和成员函数用法1&#x…

java数据结构与算法基础-----位运算-----持续补充

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 刷题过程中&#xff0c;用到什么关于位运算的知识点&#xff0c;就补充什…

【开源】SpringBoot框架开发独居老人物资配送系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示四、核心代码4.1 查询社区4.2 新增物资4.3 查询物资4.4 查询物资配送4.5 新增物资配送 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的独居老人物资配送系统&#xff0c;包含了社区档案、…

数据密集型应用系统设计

数据密集型应用系统设计 原文完整版PDF&#xff1a;https://pan.quark.cn/s/d5a34151fee9 这本书的作者是少有的从工业界干到学术界的牛人&#xff0c;知识面广得惊人&#xff0c;也善于举一反三&#xff0c;知识之间互相关联&#xff0c;比如有个地方把读路径比作programming …

医卫答案在哪搜?九个公众号和软件推荐清单! #笔记#笔记#微信

在这个信息爆炸的时代&#xff0c;合理利用学习工具可以帮助我们过滤和获取有用的知识。 1.粉鹿搜题 这是一个公众号 题库包括四六级答案、各学校往期课后答案、期末考试题等&#xff0c;使用比较简单。 下方附上一些测试的试题及答案 1、最有可能担任债券发行受托人的个人…

Tuxera NTFS 2024永久免费版Mac系统NTFS磁盘读写软件

Tuxera NTFS 2024是一款Mac系统NTFS磁盘读写软件&#xff0c;由Tuxera公司开发。该软件可以在Mac上打开、编辑、复制、移动或删除存储在Windows NTFS格式USB驱动器上的文件。对于需要在Mac和Windows之间频繁传输文件的用户来说&#xff0c;Tuxera NTFS 2024无疑是一个方便且高效…

关于内存相关的梳理

1 关键字 总结 &#xff08;lowmemory&#xff0c;anr in&#xff09; 2 知识储备 虚拟机原理 垃圾回收算法 又包含标记 和清除两种算法 标记&#xff1a;程序计数器-已过时&#xff0c;可达性分析 具体可见 http://help.eclipse.org/luna/index.jsp?topic%2Forg.ec…

摸索设计模式的魅力:从策略模式看软件设计的智慧-灵活应对变化的艺术

设计模式专栏&#xff1a;http://t.csdnimg.cn/U54zu 引言 策略模式是一种设计理念&#xff0c;它允许开发者定义一族算法&#xff0c;将每一个算法封装起来&#xff0c;并且让它们可以相互替换。这种模式让算法的变化独立于使用算法的客户端&#xff0c;即程序的其他部分。在软…

如何手机搜保育员答案?9个大学生必备的搜题 #微信#媒体#知识分享

可以说是搜题软件里面题库较为齐全的一个了&#xff0c;收录国内高校常见的计算机类、资格类、学历类、外语类、工程类、建筑类等多种类型的题目。它可以拍照解题、拍照答疑、智能解题&#xff0c;并支持每日一练、章节练习、错题重做等特色功能&#xff0c;在帮助大家解答疑惑…

【深度学习】Pytorch 系列教程(二):PyTorch数据结构:1、Tensor(张量): GPU加速(GPU Acceleration)

文章目录 一、前言二、实验环境三、PyTorch数据结构0、分类1、Tensor&#xff08;张量&#xff09;1. 维度&#xff08;Dimensions&#xff09;2. 数据类型&#xff08;Data Types&#xff09;3. GPU加速&#xff08;GPU Acceleration&#xff09;查看可用gpu张量移动经典语句d…

Ansible file文件模块 设置文件的属性,比如创建文件、创建链接文件、删除文件

目录 语法创建目录创建链接文件删除文件 每个值的属性 语法 创建目录 ansible slave -m file -a path/data/app statedirectory path/data/app # 定义创建路径 statedirectory # 如果目录不存在就创建目录这就是创建目录成功之后的回显 可以看到&#xff0c;已经打印出目录a…

Rust 数据结构与算法:1算法分析之乱序字符串检查

Rust 数据结构与算法 一、算法分析 算法是通用的旨在解决某种问题的指令列表。 算法分析是基于算法使用的资源量来进行比较的。之所以说一个算法比另一个算法好,原因就在于前者在使用资源方面更有效率,或者说前者使用了更少的资源。 ●算法使用的空间指的是内存消耗。算法…

(通信)驻波

驻波是一种物理现象&#xff0c;它发生在频率相同、传输方向相反的两种波&#xff08;不一定是电波&#xff09;沿传输线形成的一种分布状态。 在这种状态下&#xff0c;一个波通常是另一个波的反射波。 在驻波中&#xff0c;波节和波腹的位置始终保持不变&#xff0c;给人一种…

vue-组件组成和组件通信(四)

组件的三大组成部分 (结构/样式/逻辑) scoped样式冲突 默认情况&#xff1a;写在组件中的样式会 全局生效 → 因此很容易造成多个组件之间的样式冲突问题。 1. 全局样式: 默认组件中的样式会作用到全局 2. 局部样式: 可以给组件加上 scoped 属性, 可以让样式只作用于当前组…