【每日一题】 2024年2月汇编(上)

🔥博客主页: A_SHOWY
🎥系列专栏:力扣刷题总结录 数据结构  云计算  数字图像处理  力扣每日一题_ 

 

【2.1】LCP 24.数字游戏

LCP 24. 数字游戏icon-default.png?t=N7T8https://leetcode.cn/problems/5TxKeK/

这个题目可以变换一下就是将一个递增的需求经过nums【i】-i变换变成一个求相等的需求,找中位数,用到了大小堆栈(优先队列),收获颇多。

  1. 首先是对于大小堆栈的定义,对于大堆栈可以默认定义为 如下,小顶堆需要声明一下
    priority_queue<int> L;//大顶堆
    priority_queue<int,vector<int>,greater<int>> R;//小顶堆
    //第一个int是堆中数据类型,第二个数组是定义底层容器类型,第三个是比较函数大顶堆可以默认,也可以写上less<int>,小顶堆是greater

    大顶堆是堆顶是最大元素,后边push的一直维护一个递减,小顶堆相反

  2. 这个操作是一个动态平衡的一个思想,每加入一个元素,优先放到左边,进行动态调整,始终保持左边最多比右边多一个,堆会自动排好序。计算结果的时候,考虑先找出这一段的中位数,左右分开计算。
  3. 在计算这个ans【i】的时候,要注意这个整除溢出问题,所以给mid一个long long
class Solution {
public:
    vector<int> numsGame(vector<int>& nums) {
    priority_queue<int> L;//大顶堆
    priority_queue<int,vector<int>,greater<int>> R;//小顶堆
    for(int i = 0; i < nums.size(); i++){
        nums[i] = nums[i] - i;
    }
    long sumL = 0;
    long sumR = 0;
    int mod = 1e9 +7;

    vector<int> ans(nums.size(),0);
    for(int i = 0; i < nums.size(); i++){
        if(L.empty() || nums[i] <= L.top()) {
            L.push(nums[i]);
            sumL += nums[i];
            //平衡
              if(L.size() > R.size() + 1){
            R.push(L.top());
            sumL -= L.top();
            sumR += R.top();
            L.pop();
        }
        }
        else{
            R.push(nums[i]);
            sumR += nums[i];
            if(L.size() < R.size()){
                L.push(R.top());
            sumR -= R.top();
            sumL += L.top();
            R.pop();
            }
        }
         long long  mid = L.top();
         ans[i] = (((i + 2) / 2) * mid - sumL + sumR - ((i + 1) / 2) * mid) % mod ; 
        
    }
    return ans;
    }
};

【2.2】1686.石子游戏Ⅵ

1686. 石子游戏 VIicon-default.png?t=N7T8https://leetcode.cn/problems/stone-game-vi/

对贪心的理解还是不够深入,贪心+排序即可解决这个问题,当你选择取一个石子的时候,你不仅是取得了你的分数,也让这个分数不能被你的对手获取,所以每次取的时候,你应该取使得aliceValues[i] + bobVlaues[i]最大的石子。

  1.  贪心的话,不仅要让自己取得的数比较大,还不能让别人取到大的你应该取使得aliceValues[i] + bobVlaues[i]最大的石子。
  2. 整体的代码思路为创建一个数组,这个数组是一维的,但是存储的是一个键值对,因为一会儿要排序,但是要存储它原始数组对应的位置,用这个新数组存储两个和,先排序再翻转就得到了一个递减数组,然后每两个一对做一个循环两个人依次取比较即可。
class Solution {
public:
    int stoneGameVI(vector<int>& aliceValues, vector<int>& bobValues) {
     int n = aliceValues.size();
     vector<pair<int,int>> stones;
     for(int i = 0 ; i < n ; i++){
         stones.push_back({aliceValues[i] + bobValues[i],i});
     }
     sort(stones.begin(),stones.end());
     reverse(stones.begin(),stones.end());
     int a = 0,b = 0;
     for(int i = 0; i < n; i += 2){
            a += aliceValues[stones[i].second];
            if(i + 1 < n) b += bobValues[stones[i + 1].second];
     }
     return a == b ? 0 : (a > b ? 1 : -1);
    }
};

【2.3】1690.石子游戏

1690. 石子游戏 VIIicon-default.png?t=N7T8https://leetcode.cn/problems/stone-game-vii/

这个题目是一个动态规划问题,相对来说还是比较复杂,可能也是我对动态规划整体不够熟悉,值得整理的一个题目,思路清晰很重要。

  • 对于这个题目的解题首先要理解明确几个问题 ,找出dp关系
  1. 首先明确——谁是先手谁的得分就最大.

  2. 对于 dp[i][j] 定义为区间 [i,j] 我们要的结果,在区间 [i, j],dp[i][j] = 先手的总分 - 后手的总分。

  3. 如果 dp[i][j]这个区间当前是鲍勃操作,那么鲍勃的得分一定最大。选择去掉 stones[i] 后当前的分数为 sum(stones[i + 1], stones[j]).那么区间 [i + 1, j]鲍勃的得分是多少呢?不用管它dp[i + 1][j] 一定为对手爱丽丝作为先手得到的结果,因为谁先手谁的得分最大,则 dp[i + 1][j] = 爱丽丝得分 - 鲍勃的得分。
    sum(stones[i + 1], stones[j]) - dp[i + 1][j]
    = 鲍勃当前操作得分 - (爱丽丝的总分 - 鲍勃的总分)
    = 鲍勃当前操作得分 + 鲍勃的总分 - 爱丽丝的总分
    = 鲍勃新的总分 - 爱丽丝的总分 > 0(谁先手谁最大)。
    如果去掉 stones[j] 则原理同上.

    如果当前 dp[i][j] 是爱丽丝,则将上面的叙述中爱丽丝和鲍勃名字互换。

  4. 对于爱丽丝我们很好理解为什么要最大化dp[i][j] = max(sum(stones[i + 1], stones[j]) - dp[i + 1][j], sum(stones[i], stones[j - 1]) - dp[i][j - 1]);那么鲍勃为什么也要最大化 dp[i][j] 呢,因为爱丽丝先手,鲍勃必输,题目给出了。所以只有当鲍勃操作时 dp[i][j] 最大,才能让爱丽丝操作时得到的结果最小,满足鲍勃的野心
    爱丽丝当前操作得分 - (鲍勃的总分 - 爱丽丝的总分)(鲍勃操作时的最大化差值)

    //假设现在Bob先手
    //现在要得到的结果dp[i][j] = Bob当前操作的得分 - (Alice的总得分 - Bob的总得分)=  sum(stones[i + 1], stones[j]) - dp[i + 1][j]
    class Solution {
    public:
    
        int stoneGameVII(vector<int>& stones) {
         vector<int> sums(stones.size() + 1,0);
         vector<vector<int>> dp(stones.size(),vector<int>(stones.size(),0));
    //   前缀和
         for(int i = 0; i < stones.size(); i++){
             sums[i + 1] = sums[i] + stones[i];
         }
    //  dp关系
        for(int i = stones.size() - 2; i >= 0; --i){
            for(int j = i + 1; j < stones.size(); ++j){
                dp[i][j] = max(sums[j + 1] - sums[i + 1] - dp[i + 1][j],sums[j] - sums[i] - dp[i][j -1]);
            }
        }
        return dp.front().back();
        }
    };
  • 对于代码的核心其实是前缀和 + dp关系。定义两个数组,一个记录sum(n+1),一个记录dp关系,做dp关系的循环时候,要从内部往外部递归,不要错了顺序。最后.front.back是【0】【size - 1】的意思。

【2.4】292.Nim游戏

292. Nim 游戏icon-default.png?t=N7T8https://leetcode.cn/problems/nim-game/

一个小小的思维题,当有1、2、3个时候,你可以直接拿走直接赢了,但是当有4个时候,你拿几个,对面都能直接赢,当有5,6,7个时候。你可以先拿走一些剩下四个,这样对面拿啥你都行,但是当第8个的时候,你拿几个,对面都能给你剩下四个,依次类推,当有4,8,12等的时候4的倍数的时候,你都不能赢。    

class Solution {
public:
    bool canWinNim(int n) {
      return n % 4 != 0;
    }
};

【2.5】1696.跳跃游戏Ⅵ

1696. 跳跃游戏 VIicon-default.png?t=N7T8https://leetcode.cn/problems/jump-game-vi/

这道题目,第一思路就是递推,但是很遗憾2000分的题直接超时,需要用到单调队列去处理,好久不用了,有点生疏了。

方法一:递归(超时)

 dp[i] = *max_element(dp.begin() +max(i - k,0),dp.begin() + i) + nums[i];

看一下从i往前k个数中的最大值加上nums【i】 

//递推
class Solution {
public:
    int maxResult(vector<int>& nums, int k) {
    int n = nums.size();
    vector<int> dp(n);
    dp[0] = nums[0];
    for(int i = 1; i < n; i++){
        dp[i] = *max_element(dp.begin() +max(i - k,0),dp.begin() + i) + nums[i];
    }
    return dp[n - 1];
    }
};

 方法二: 单调队列

 仔细观察题目,和我们之前做的一个题目特别的像,滑动窗口最大值,我们用到就是单调双端队列!,这个其实一个意思。入的时候,先看前面有没有比他小的,如果有,pop掉再入,保证整体是一个单调递减,开头判断是否需要出。然后转移关系是 f[i] = f[q.front()] + nums[i];

class Solution {
public:
    int maxResult(vector<int>& nums, int k) {
      int n = nums.size();
      vector<int> f(n);
      f[0] = nums[0];
      deque<int> q = {0};
      for(int i = 1; i < n; i++){
          //数量超了,出
          if(q.front() < i - k){
              q.pop_front();
          }
          //转移
          f[i] = f[q.front()] + nums[i];

          //入,注意这里是while
          while(!q.empty() && f [i] >= f[q.back()]){
              q.pop_back();
          }
          q.push_back(i);
      }
      return f[n - 1];
    }
};

 回顾一下滑动窗口最大值那个题目

239.滑动窗口最大值

239. 滑动窗口最大值icon-default.png?t=N7T8https://leetcode.cn/problems/sliding-window-maximum/

class Solution {
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
    int n = nums.size();
    deque<int> q;
    vector<int>res (nums.size() - k + 1);
    // 形成窗口前
    for(int i = 0; i < k; i++){
       while(!q.empty() && q.back() < nums[i]){
           q.pop_back();
       }
       q.push_back(nums[i]);
    }
    res[0] = q.front();

    // 形成窗口后
    for(int i = k; i < n; i++){
        if(q.front() == nums[i - k]){
            q.pop_front();
        }
        while(!q.empty() && q.back() < nums[i]){
            q.pop_back();
        }
        q.push_back(nums[i]);
        res[i - k + 1] = q.front();
    }
      return res;
    }
};

【2.6】LCP 30魔塔游戏

LCP 30. 魔塔游戏icon-default.png?t=N7T8https://leetcode.cn/problems/p0NxJO/

魔塔游戏,就是让这个血量在最后前不能小于0,是一个贪心加优先队列的一个思路,用一个小顶堆去维护一个顶端最小的一个数,每当这个hp小于0的时候,就贪心地把一个最小的扔到最后,但是不要忘了设置一个delay,最后要加上验算是否总和大于0.

需要注意以下数据量,大概10的15次方,hp和dalay需要声明long long 

class Solution {
public:
    int magicTower(vector<int>& nums) {
    // 小顶堆
    priority_queue<int,vector<int>,greater<int>> q; 
    int ans = 0;
    long long hp = 1,delay = 0;
    int sum = 0;
    for(int num : nums){
        if(num < 0) {
            q.push(num);
        }
        hp += num;
        if(hp <= 0){
            ans ++;
            delay += q.top();
            hp -= q.top();
            q.pop();
        }
    }
    // 最后要把这个delay加上,如果小于0,铁不行
         hp += delay;
         return hp > 0 ? ans : -1; 
    }
};

补充:LCP 24数字游戏

LCP 24. 数字游戏icon-default.png?t=N7T8https://leetcode.cn/problems/5TxKeK/

同样是用优先队列,大顶推和小顶堆都用上了。整体思路就是,对顶堆维护动态的中位数,两个相对的顶堆,大顶堆的left就是中位数。

注意,顶堆在push和pop后,会自动插入相应位置形成单调。再次回顾顶堆的定义。大顶堆可以直接默认,小顶堆需要声明完全 

        priority_queue<int> q1;//大顶堆
        priority_queue<int,vector<int>,greater<int>>q2;//小顶堆
class Solution {
public:
    vector<int> numsGame(vector<int>& nums) {
        int n = nums.size();
        priority_queue<int> q1;//大顶堆
        priority_queue<int,vector<int>,greater<int>>q2;//小顶堆
        for(int i = 0; i < n; i++){
        nums[i] = nums[i] - i;
     }

vector<int> res(n,0);

long long mod = 1e9 + 7;
long long sum1 = 0;
long long sum2 = 0;

//对顶堆维护动态的中位数
for(int i = 0 ;i < n; i++){
    if(q1.empty() || nums[i] <= q1.top()){
        q1.push(nums[i]);
        sum1 += nums[i];
        //维护平衡
        if(q1.size() > q2.size() + 1){
            q2.push(q1.top());
            sum1 -= q1.top();
            sum2 += q1.top();
            q1.pop();
        }
    }
        else{
            q2.push(nums[i]);
            sum2 += nums[i];
            if(q2.size() > q1.size()){
                q1.push(q2.top());
                sum2 -= q2.top();
                sum1 += q2.top();
                q2.pop();
            }
        
    }
    long long mid = q1.top();
        res[i] = (((i + 2) / 2) * mid - sum1 + sum2 - mid * ((i + 1) / 2)) % mod;
}
return res;
    }
};

【2.8】993.二叉树的堂兄弟结点

993. 二叉树的堂兄弟节点icon-default.png?t=N7T8https://leetcode.cn/problems/cousins-in-binary-tree/

 关于找堂兄弟,可以用深度优先和广度优先,虽然简单,但是确实冗长,我更熟悉用DFS解决。

方法一:DFS(深度优先遍历) 

核心代码在于dfs函数内部逻辑。 

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    //x 数据
    int x;
    int x_depth;
    TreeNode *x_parent;
    bool x_found = false;
    //y 数据
    int y;
    int y_depth;
    TreeNode *y_parent;
    bool y_found = false;
    void dfs(TreeNode *node, int depth,TreeNode *parent){
        if(!node){return;}
        if(node -> val == x){
            x_depth = depth;
            x_parent = parent;
            bool x_found = true;
        }
        else if(node -> val == y){
            y_depth = depth;
            y_parent = parent;
            bool y_found = true;
        }
        //两个都找到了,就return
        if(x_found && y_found){
            return;
        }
        dfs(node -> left,depth + 1,node);
        if(x_found && y_found){
            return;
        }
        dfs(node -> right,depth + 1, node);
    }
    bool isCousins(TreeNode* root, int x, int y) {
     this -> x = x;
     this -> y = y;
     dfs(root,0,nullptr);
     return(x_depth == y_depth && x_parent != y_parent);
    }
};

【2.09】236.二叉树的最近公共祖先

236. 二叉树的最近公共祖先icon-default.png?t=N7T8https://leetcode.cn/problems/lowest-common-ancestor-of-a-binary-tree/

整体思路还是递归,树的知识感觉大同小异,直接dfs ,分类四种情况

  1. 分三步考虑,第一终止条件,当root等于p或者q的时候,返回root,说明找到了,当为空的时候,返回null,说明找穿了
  2. 第二步递推工作,就是递归完左边,递归右边
  3. 第三步返回值,分为四种情况,第一种,left,right都是空,说明root的左右子树都不包含,返回空,如果left,right、同时不为空,说明在root的两侧,root就是最近子节点,返回root,如果left为空,说明p或者q在root的右侧直接返回right,right为空同理。 
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if(root == p || root == q || root == nullptr) return root;
        TreeNode* left = lowestCommonAncestor(root -> left,p,q);
        TreeNode* right = lowestCommonAncestor(root -> right,p,q);
        if(left == NULL && right == NULL) return NULL;
        if(left == NULL) return right;
        if(right == NULL) return left;
        return root;
    }
};

【2.10】94.二叉树的中序遍历

【2.11】144.二叉树的前序遍历

【2.12】145.二叉树的后序遍历

94. 二叉树的中序遍历icon-default.png?t=N7T8https://leetcode.cn/problems/binary-tree-inorder-traversal/
144. 二叉树的前序遍历icon-default.png?t=N7T8https://leetcode.cn/problems/binary-tree-preorder-traversal/

145. 二叉树的后序遍历icon-default.png?t=N7T8https://leetcode.cn/problems/binary-tree-postorder-traversal/

 这三个题目过年三天官方福利,三个简单题目思路完全一样,前序后序和中序遍历,搞清楚概念用dfs解决即可。

前序遍历:按照访问根节点——左子树——右子树

中序遍历:按照访问左子树——根节点——右子树 

后序遍历:按照访问左子树——右子树——根节点

这个序是按照根节点位置来的

//94
class Solution {
public:
    void inorder(TreeNode* root,vector<int>& res)
    {
        if(!root){
            return;
        }
        inorder(root -> left,res);
        res.push_back(root -> val);
        inorder(root ->right,res);
    }

    vector<int> inorderTraversal(TreeNode* root) {
    vector<int> res;
    inorder(root,res);
    return res;
    }
};
//144
class Solution {
public:
     void qianxu(TreeNode* root,vector<int> &res){
        if(!root) {return;}
        res.push_back(root -> val);
        qianxu(root -> left,res);
        qianxu(root -> right,res);
    }
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> res;
        qianxu(root,res);
        return res;
      
    }
};
//145
class Solution {
public:
    void houXu(TreeNode* root,vector<int> &res){
        if(!root){
            return;
        }
        houXu(root -> left,res);
        houXu(root-> right,res);
        res.push_back(root -> val);
       
    }
    vector<int> postorderTraversal(TreeNode* root) {
     vector<int>res;
     houXu(root,res);
     return res;
    }
};

【2.13】987.二叉树的垂序遍历

987. 二叉树的垂序遍历icon-default.png?t=N7T8https://leetcode.cn/problems/vertical-order-traversal-of-a-binary-tree/

整体思路运用dfs输出每个结点的行列和值的对应关系,用哈希表存储,再对哈希表进行遍历输出。

  1. 值得注意的是,在哈希表遍历输入的时候,一定要用emplace_back(),这样可以一个键存多个值对,如果用push_back则不行,在后续遍历哈希表的时候,无法将键一样的存在一个数组里。
  2. 整体思路,dfs经典递归,然后先对每一个键的值对遍历,排序后存到每一个数组中,还有就是ranges::sort排序更为方便直接()内加容器。
class Solution {
      map<int, vector<pair<int, int>>> groups;
public:
     void dfs(TreeNode *node, int row,int  col){
      if(!node){return;}
     groups[col].emplace_back(row,node -> val);
     dfs(node -> left,row + 1,col - 1);
     dfs(node -> right,row + 1, col + 1);
     }
    vector<vector<int>> verticalTraversal(TreeNode* root) {
    dfs(root,0,0);
    vector<vector<int>> ans;
    for(auto &[_,g] : groups){
        ranges :: sort(g);
        vector<int> vals;
    for(auto &[_,val] : g){
        vals.push_back(val);
    }
    ans.push_back(vals);
    }
    return ans;
    }
};

【2.14】102.二叉树的层序遍历

102. 二叉树的层序遍历icon-default.png?t=N7T8https://leetcode.cn/problems/binary-tree-level-order-traversal/

对于这种层序遍历就不得不用BFS了。层序遍历和最短路径是BFS的主要就业空间。

  1. 值得注意的几个点,第一个是 在二维向量中添加一维向量之前最好是先创建一个一维向量。
  2. 在BFS中,常用队列数据结构,因为其先进先出的特性,可以pop出以后,对结点的左右子树进行遍历实现广度优先遍历。
class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        vector<vector<int>> res;
      if(!root) {
          return res;
      }
    
      queue<TreeNode*> q;
      q.push(root);
      while(!q.empty()){
          int currentSize = q.size();
          res.push_back(vector<int>());//在二维向量中添加一维向量之前最好是先创建一个一维向量
          for(int i = 1; i <= currentSize;++i){
              auto node = q.front();q.pop();
              res.back().push_back(node -> val);
              if(node -> left) q.push(node -> left);
              if(node -> right) q.push(node -> right);
          }
      }
      return res;
    }
};

【2.15】102.二叉树的层序遍历Ⅱ

107. 二叉树的层序遍历 IIicon-default.png?t=N7T8https://leetcode.cn/problems/binary-tree-level-order-traversal-ii/

 和上一题基本一样,就是加一个reverse的函数,BFS以后数组再swap一下反向输出就行

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:

 void reverseArray(vector<vector<int>> &arr,int size){
      int start = 0;
      int end = size -1;
      while(start <= end){
        //   auto temp = arr[start];
        //   arr[start] = arr[end];
        //   arr[end] = temp;

        //   start ++;
        //   end  --;
        swap(arr[start],arr[end]);
          start ++;
          end  --;
      }
    }

    vector<vector<int>> levelOrderBottom(TreeNode* root) {
     vector<vector<int>> res;
      if(!root) {
          return res;
      }
    
      queue<TreeNode*> q;
      q.push(root);
      while(!q.empty()){
          int currentSize = q.size();
          res.push_back(vector<int>());//在二维向量中添加一维向量之前最好是先创建一个一维向量
          for(int i = 1; i <= currentSize;++i){
              auto node = q.front();q.pop();
              res.back().push_back(node -> val);
              if(node -> left) q.push(node -> left);
              if(node -> right) q.push(node -> right);
          }
      }
      reverseArray(res,res.size());
      return res;
    }
};

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/388464.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python-web自动化-Playwright的学习

Python-web自动化-Playwright的学习 1. 安装playwright2. 界面等待3. 自动化代码助手4. 定位元素1. css selector定位2. xpath定位3. get_by_XXX定位 5. 操作元素1. 单选框、复选框2. select下拉框3. 网页操作4. 框架页 frame5. 窗口切换6. 截屏 1. 安装playwright pip命令 pi…

全闭环直播推流桌面分享远控系统

直播推流涉及多协议&#xff0c;多端技术栈和知识点&#xff0c;&#xff0c;想要做好并不容易&#xff0c;经过几年时间的迭代&#xff0c;终于小有成就&#xff0c;聚集了媒体服务器&#xff0c;实时会议sfu&#xff0c;远控kvm等功能。可以做一个音视频应用的瑞士小军刀。主…

【MySQL】学习外键约束处理员工数据

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-g4glZPIY0IKhiTfe {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

每日五道java面试题之java基础篇(九)

目录&#xff1a; 第一题 你们项⽬如何排查JVM问题第二题 ⼀个对象从加载到JVM&#xff0c;再到被GC清除&#xff0c;都经历了什么过程&#xff1f;第三题 怎么确定⼀个对象到底是不是垃圾&#xff1f;第四题 JVM有哪些垃圾回收算法&#xff1f;第五题 什么是STW&#xff1f; 第…

(14)Hive调优——合并小文件

目录 一、小文件产生的原因 二、小文件的危害 三、小文件的解决方案 3.1 小文件的预防 3.1.1 减少Map数量 3.1.2 减少Reduce的数量 3.2 已存在的小文件合并 3.2.1 方式一&#xff1a;insert overwrite (推荐) 3.2.2 方式二&#xff1a;concatenate 3.2.3 方式三&#xff…

VS Code中的JDK设置

在VS Code使用中&#xff0c;如果机器只安装了一个版本的JDK版本&#xff0c;一般不需要特别关注JDK 的配置&#xff0c;但是在以下状况下&#xff0c;需要对JDK进行特别的配置&#xff1a; 机器有多个JDK版本&#xff0c;不同的项目使用不同的JDK版本项目使用的JDK版本较低&a…

【C/C++】2024春晚刘谦春晚魔术步骤模拟+暴力破解

在这个特别的除夕夜&#xff0c;我们不仅享受了与家人的温馨团聚&#xff0c;还被电视机前的春节联欢晚会深深吸引。特别是&#xff0c;魔术师刘谦的精彩表演&#xff0c;为我们带来了一场视觉和心灵的盛宴。在我的博客“【C/C】2024春晚刘谦春晚魔术步骤模拟暴力破解”中&…

洛谷C++简单题小练习day12—寻找最小值小程序

day12--寻找最小值--2.16 习题概述 题目描述 给出 n 和 n 个整数 ai​&#xff0c;求这 n 个整数中最小值是什么。 输入格式 第一行输入一个正整数 n&#xff0c;表示数字个数。 第二行输入 n 个非负整数&#xff0c;表示 1,2…a1​,a2​…an​&#xff0c;以空格隔开。 …

leetcode:343.整数拆分

解题思路&#xff1a; 拆分的越多越好&#xff08;暂且认为&#xff09;&#xff0c;尽可能拆成m个近似相等的数&#xff0c;会使得乘积最大 dp含义&#xff1a;将i进行拆分得到最大的积为dp[i] 递推公式&#xff1a;j x dp[i-j](固定j&#xff0c;只通过凑dp[i-j]进而实现所…

报警产生器

1&#xff0e;  实验任务 用P1.0输出1KHz和500Hz的音频信号驱动扬声器&#xff0c;作报警信号&#xff0c;要求1KHz信号响100ms&#xff0c;500Hz信号响200ms,交替进行&#xff0c;P1.7接一开关进行控制&#xff0c;当开关合上响报警信号&#xff0c;当开关断开告警信号停止&…

SPI控制8_8点阵屏

协议与硬件概述 SPI SPI是串行外设接口&#xff08;Serial Peripheral Interface&#xff09;的缩写。是一种高速的&#xff08;10Mbps&#xff09;的&#xff0c;全双工&#xff0c;同步的通信总线&#xff0c;并且在芯片的管脚上只占用四根线。 引脚介绍 SCLK&#xff1a;…

2024年【安徽省安全员C证】考试题库及安徽省安全员C证免费试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 安徽省安全员C证考试题库根据新安徽省安全员C证考试大纲要求&#xff0c;安全生产模拟考试一点通将安徽省安全员C证模拟考试试题进行汇编&#xff0c;组成一套安徽省安全员C证全真模拟考试试题&#xff0c;学员可通过…

ChatGPT高效提问—prompt实践(教师助手)

ChatGPT高效提问—prompt实践&#xff08;教师助手&#xff09; 下面来看看ChatGPT在教育领域有什么用途。 首先设定ChatGPT的角色为高中教师助手。 输入prompt: ChatGPT输出&#xff1a; ​ 教师助手的角色已经设置完成。下面通过几种不同的情景演示如何使用。 1.1.1 制定…

专业130+总分420+厦门大学847信号与系统考研经验厦大信息系统与通信工程,真题,大纲,参考书。

今年很幸运被厦门大学录取&#xff0c;考研专业课847信号与系统130&#xff0c;数二130&#xff0c;总分420&#xff0c;回头看这将近一年的复习&#xff0c;还是有不少经验和大家分享&#xff0c;希望对大家复习有帮助。专业课&#xff1a; 厦门大学847信号与系统在全国各高校…

comfyui换脸学习笔记

目录 Portrait Maker ComfyUI_Lam 人脸融合方案&#xff1a; 圣诞写真工作流 IPadapter faceID/faceID plus/faceID plusV2/Reactor换脸效果对比来 Portrait Maker 核心用的是 EasyPhoto ComfyUI_Lam 人脸融合方案&#xff1a; demo效果还可以&#xff0c;真实效果不是很稳…

Linux操作系统基础(十四):集群服务器搭建

文章目录 集群服务器搭建 一、新增Linux服务器 1、克隆虚拟机 2、修改虚拟机的硬件配置 3、修改虚拟机的网络配置 二、关闭防火墙 1、关闭firewalld 2、关闭SElinux 三、修改主机名 四、修改hosts映射 五、SSH免密登录 六、时钟同步 七、远程文件拷贝 1、从本机拷…

网红铁头因涉黄经历遭全网封杀

关注卢松松&#xff0c;会经常给你分享一些我的经验和观点。 铁头根本没意识到自己是公众人物了。 知名网红“铁头惩恶扬善”帐号被全网封禁&#xff0c;原因是因为遭到别人举报&#xff0c;1月12日凌晨“铁头”在直播的时候呢&#xff0c;自爆其涉黄经历。 铁头居然自己在直…

二维数组及函数的非函数实现

2024年2月14日 1.请编程实现二维数组的杨慧三角 #include<stdio.h> #include<stdlib.h> #include<string.h> void Yanghui(int n,int (*p)[n]) {for(int i0;i<n;i){for(int j0;j<i;j){if(j0||ij){*(*(pi)j)1;}else{*(*(pi)j)*(*(pi-1)j-1)*(*(pi-1)j)…

HTML快速入门教程

HTML&#xff1a;超文本标记语言&#xff08;Hyper Text Markup Language&#xff09;&#xff0c;是通过标签的形式将内容组织起来然后共享到网络之上供其他电脑访问查看。 大家可以思考一下&#xff0c;怎么将自己电脑上的文件或图片共享给其他电脑&#xff1f; 这时候会说通…

计算机的历史以及原理

一、计算机发展历史 计算机的历史可以追溯到几个世纪前,但现代计算机的起源和发展主要经历了以下几个重要阶段: 1. 机械计算设备:早在17世纪,人们就开始尝试制造可以进行基本数学运算的设备。例如,法国哲学家兼数学家Blaise Pascal在1642年发明了Pascalene,这是一种用于…