ElasticSearch分词器和相关性详解

目录

ES分词器详解

基本概念

分词发生时期

分词器的组成

切词器:Tokenizer

词项过滤器:Token Filter

停用词

同义词

字符过滤器:Character Filter

HTML 标签过滤器:HTML Strip Character Filter

字符映射过滤器:Mapping Character Filter

正则替换过滤器:Pattern Replace Character Filter

相关性详解

什么是相关性(Relevance)

相关性算法

TF-IDF

BM25

通过Explain API查看TF-IDF

Boosting Query


ES分词器详解

基本概念

       分词器官方称之为文本分析器,顾名思义,是对文本进行分析处理的一种手段,基本处理逻辑为按照预先制定的分词规则,把原始文档分割成若干更小粒度的词项,粒度大小取决于分词器规则。


分词发生时期

分词器的处理过程发生在 Index Time 和 Search Time 两个时期。

Index Time:文档写入并创建倒排索引时期,其分词逻辑取决于映射参数analyzer。

Search Time:搜索发生时期,其分词仅对搜索词产生作用。


分词器的组成

切词器(Tokenizer):用于定义切词(分词)逻辑。

词项过滤器(Token Filter):用于对分词之后的单个词项的处理逻辑。

字符过滤器(Character Filter):用于处理单个字符。

注意:分词器不会对源数据造成任何影响,分词仅仅是对倒排索引或者搜索词的行为。

切词器:Tokenizer

        tokenizer 是分词器的核心组成部分之一,其主要作用是分词,或称之为切词。主要用来对原始文本进行细粒度拆分。拆分之后的每一个部分称之为一个 Term,或称之为一个词项。可以把切词器理解为预定义的切词规则。官方内置了很多种切词器,默认的切词器位 standard。

词项过滤器:Token Filter

       词项过滤器用来处理切词完成之后的词项,例如把大小写转换,删除停用词或同义词处理等。官方同样预置了很多词项过滤器,基本可以满足日常开发的需要。当然也是支持第三方也自行开发的。

GET _analyze
 {
 "filter" : ["lowercase"],
 "text" : "WWW ELASTIC ORG CN"
 }

 GET _analyze
 {
 "tokenizer" : "standard",
 "filter" : ["uppercase"],
 "text" : ["www.elastic.org.cn","www elastic org cn"]
 }

停用词
在切词完成之后,会被干掉词项,即停用词。停用词可以自定义
英文停用词(english):a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on,
or, such, that, the, their, then, there, these, they, this, to, was, will, with。
中日韩停用词(cjk):a, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, s,
such, t, that, the, their, then, there, these, they, this, to, was, will, with, www。
DELETE test_token_filter_stop
PUT test_token_filter_stop
{
  "settings": {
    "analysis": {
      "filter": {
        "my_filter": {
          "type": "stop",
          "stopwords": [
            "www"
          ],
          "ignore_case": true
        }
      }
    }
  }
}
GET test_token_filter_stop/_analyze
{
  "tokenizer": "standard",
  "filter": [
    "my_filter"
  ],
  "text": [
    "What www WWW are you doing"
  ]
}

同义词

同义词定义规则

a, b, c => d:这种方式,a、b、c 会被 d 代替。

a, b, c, d:这种方式下,a、b、c、d 是等价的。

PUT test_token_filter_synonym
{
  "settings": {
    "analysis": {
      "filter": {
        "my_synonym": {
          "type": "synonym",
          "synonyms": [ "good, nice => excellent" ] //good, nice, excellent
        }
      }
    }
  }
}
GET test_token_filter_synonym/_analyze
{
  "tokenizer": "standard", 
  "filter": ["my_synonym"], 
  "text": ["good"]
}

字符过滤器:Character Filter

分词之前的预处理,过滤无用字符。

PUT <index_name>
{
  "settings": {
    "analysis": {
      "char_filter": {
        "my_char_filter": {
          "type": "<char_filter_type>"
        }
      }
    }
  }
}

type:使用的字符过滤器类型名称,可配置以下值:

html_strip、mapping、pattern_replace

HTML 标签过滤器:HTML Strip Character Filter

字符过滤器会去除 HTML 标签和转义 HTML 元素,如、&

PUT test_html_strip_filter
{
  "settings": {
    "analysis": {
      "char_filter": {
        "my_char_filter": {
          "type": "html_strip",  // html_strip 代表使用 HTML 标签过滤器
          "escaped_tags": [     // 当前仅保留 a 标签        
            "a"
          ]
        }
      }
    }
  }
}
GET test_html_strip_filter/_analyze
{
  "tokenizer": "standard", 
  "char_filter": ["my_char_filter"],
  "text": ["<p>I&apos;m so <a>happy</a>!</p>"]
}

参数:escaped_tags:需要保留的 html 标签。

字符映射过滤器:Mapping Character Filter

通过定义映替换为规则,把特定字符替换为指定字符

PUT test_html_strip_filter
{
  "settings": {
    "analysis": {
      "char_filter": {
        "my_char_filter": {
          "type": "mapping",    // mapping 代表使用字符映射过滤器
          "mappings": [                // 数组中规定的字符会被等价替换为 => 指定的字符
            "滚 => *",
            "垃 => *",
            "圾 => *"
          ]
        }
      }
    }
  }
}
GET test_html_strip_filter/_analyze
{
  //"tokenizer": "standard", 
  "char_filter": ["my_char_filter"],
  "text": "你就是个垃圾!滚"
}
正则替换过滤器:Pattern Replace Character Filter
PUT text_pattern_replace_filter
{
  "settings": {
    "analysis": {
      "char_filter": {
        "my_char_filter": {
          "type": "pattern_replace",    // pattern_replace 代表使用正则替换过滤器            
          "pattern": """(\d{3})\d{4}(\d{4})""",    // 正则表达式
          "replacement": "$1****$2"
        }
      }
    }
  }
}
GET text_pattern_replace_filter/_analyze
{
  "char_filter": ["my_char_filter"],
  "text": "您的手机号是18868686688"
}

相关性详解

搜索是用户和搜索引擎的对话,用户关心的是搜索结果的相关性

1. 是否可以找到所有相关的内容

2. 有多少不相关的内容被返回了

3. 文档的打分是否合理

4. 结合业务需求,平衡结果排名


什么是相关性(Relevance)

       搜索的相关性算分,描述了一个文档和查询语句匹配的程度。ES 会对每个匹配查询条件的结果进行算分_score。打分的本质是排序,需要把最符合用户需求的文档排在前面。

如何衡量相关性:

1. Precision(查准率)―尽可能返回较少的无关文档。

2. Recall(查全率)–尽量返回较多的相关文档。

3. Ranking -是否能够按照相关度进行排序。


相关性算法

ES5之前,默认的相关性算分采用TF-IDF,现在采用BM25。

TF-IDF

       TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。

Lucene中的TF-IDF评分公式:

TF是词频(Term Frequency)

检索词在文档中出现的频率越高,相关性也越高。

词频(TF) = 某个词在文档中出现的次数 / 文档的总词数

IDF是逆向文本频率(Inverse Document Frequency)

每个检索词在索引中出现的频率,频率越高,相关性越低。总文档中有些词比如“是”、“的” 、“在” 在所有文档中出现频率都很高,并不重要,可以减少多个文档中都频繁出现的词的权重。

逆向文本频率(IDF)= log (语料库的文档总数 / (包含该词的文档数+1))

字段长度归一值( field-length norm)

检索词出现在一个内容短的 title 要比同样的词出现在一个内容长的 content 字段权重更大。

       以上三个因素——词频(term frequency)、逆向文本频率(inverse document frequency)和字段长度归一值(field-length norm)——是在索引时计算并存储的,最后将它们结合在一起计算单个词在特定文档中的权重。

BM25

       BM25 就是对 TF-IDF 算法的改进,对于 TF-IDF 算法,TF(t) 部分的值越大,整个公式返回的值就会越大。BM25 就针对这点进行来优化,随着TF(t) 的逐步加大,该算法的返回值会趋于一个数值。

        从ES5开始,默认算法改为BM25,和经典的TF-IDF相比,当TF无限增加时,BM25算分会趋于一个数值。

               

BM25公式


通过Explain API查看TF-IDF
PUT /test_score/_bulk
{"index":{"_id":1}}
{"content":"we use Elasticsearch to power the search"}
{"index":{"_id":2}}
{"content":"we like elasticsearch"}
{"index":{"_id":3}}
{"content":"Thre scoring of documents is caculated by the scoring formula"}
{"index":{"_id":4}}
{"content":"you know,for search"}

GET /test_score/_search
{
  "explain": true, 
  "query": {
    "match": {
      "content": "elasticsearch"
    }
  }
}

GET /test_score/_explain/2
{
  "query": {
    "match": {
      "content": "elasticsearch"
    }
  }
}
Boosting Query

Boosting是控制相关度的一种手段。可以通过指定字段的boost值影响查询结果

参数boost的含义:

1. 当boost > 1时,打分的权重相对性提升

2. 当0 < boost

3. 当boost

应用场景:希望包含了某项内容的结果不是不出现,而是排序靠后。

POST /blogs/_bulk
{"index":{"_id":1}}
{"title":"Apple iPad","content":"Apple iPad,Apple iPad"}
{"index":{"_id":2}}
{"title":"Apple iPad,Apple iPad","content":"Apple iPad"}

GET /blogs/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "title": {
              "query": "apple,ipad",
              "boost": 1
            }
          }
        },
        {
          "match": {
            "content": {
              "query": "apple,ipad",
              "boost": 4
            }
          }
        }
      ]
    }
  }
}

案例:要求苹果公司的产品信息优先展示

POST /news/_bulk
{"index":{"_id":1}}
{"content":"Apple Mac"}
{"index":{"_id":2}}
{"content":"Apple iPad"}
{"index":{"_id":3}}
{"content":"Apple employee like Apple Pie and Apple Juice"}

GET /news/_search
{
  "query": {
    "bool": {
      "must": {
        "match": {
          "content": "apple"
        }
      }
    }
  }
}

利用must not排除不是苹果公司产品的文档

GET /news/_search
{
  "query": {
    "bool": {
      "must": {
        "match": {
          "content": "apple"
        }
      },
      "must_not": {
        "match":{
          "content": "pie"
        }
      }
    }
  }
}

利用negative_boost降低相关性

对某些返回结果不满意,但又不想排除掉( must_not),可以考虑boosting query的negative_boost。

1. negative_boost 对 negative部分query生效。

2. 计算评分时,boosting部分评分不修改,negative部分query乘以negative_boost值。

3. negative_boost取值:0-1.0,举例:0.3。

GET /news/_search
{
  "query": {
    "boosting": {
      "positive": {
        "match": {
          "content": "apple"
        }
      },
      "negative": {
        "match": {
          "content": "pie"
        }
      },
      "negative_boost": 0.2
    }
  }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/388193.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

linux系统zabbix监控配置电话告警

电话报警 睿象云官网操作zabbix-server主机操作睿象云操作zabbix-server的web页面操作 睿象云官网&#xff1a;https://www.aiops.com/ 睿象云官网操作 登录睿象云平台后点击智能告警平台 在集成栏选择监控工具选择zabbix 填写应用名称保存并获取key zabbix-server主机操…

php基础学习之文件包含

描述 在一个php脚本中&#xff0c;将另一个php文件包含进来&#xff0c;合作实现某种功能 这个描述看起来似乎和C/Java等语言的头文件/包有点类似&#xff0c;但本质是不一样的 打个比方&#xff1a; C/Java的头文件/包更像是一个工具箱&#xff0c;存放各种很完善的工具&#…

找不到目标和方向,怎么办?

现代社会里&#xff0c;许多人常见的症状&#xff0c;就是「空心病」。 什么是空心病呢&#xff1f;类似这样&#xff1a; 我知道要有目标&#xff0c;但我就是不知道想做什么&#xff0c;感觉对一切事物都提不起兴趣&#xff0c;没有动力&#xff0c;怎么办&#xff1f; 这个…

骑士遍历初级版

时间限制&#xff1a;1秒 内存限制&#xff1a;128M 题目描述 如图&#xff0c;从左下角A点出发&#xff0c;马只能向右走&#xff0c;根据马走日字的规则&#xff0c;究竟如何走才能到达右上角B点 输入描述 两个整数x、y&#xff0c;代表右上角B点的坐标&#xff0c…

AcWing 112. 雷达设备(区间贪心)

[题目概述] 假设海岸是一条无限长的直线&#xff0c;陆地位于海岸的一侧&#xff0c;海洋位于另外一侧。 每个小岛都位于海洋一侧的某个点上。 雷达装置均位于海岸线上&#xff0c;且雷达的监测范围为 d&#xff0c;当小岛与某雷达的距离不超过 d 时&#xff0c;该小岛可以被雷…

Excel练习:日历

Excel练习&#xff1a;日历 ‍ 题目&#xff1a;制作日历 ‍ ​​ 用rows和columns函数计算日期单元格偏移量 一个公式填充所有日期单元格 ​​ ‍

FT2232调试记录(2)

FT2232调试记录 &#xff08;1&#xff09;获取当前连接的FTDI设备通道个数:&#xff08;2&#xff09;获取当前连接的设备通道的信息:&#xff08;3&#xff09;配置SPI的通道:&#xff08;4&#xff09;如何设置GPIO:&#xff08;5&#xff09;DEMO测试&#xff1a; FT2232调…

Unity 工具之 UniWebView 内嵌网页/浏览器到应用中,并且根据UGUI大小放置(简单适配UGUI)

目录 Unity 工具之 UniWebView 内嵌网页/浏览器到应用中&#xff0c;并且根据UGUI大小放置&#xff08;简单适配UGUI&#xff09; 一、简单介绍 二、UniWebView 组件上的几个参数属性选项介绍 三、一些关键接口介绍 四、Transition 五、Memory Management&#xff08;内存…

OJ刷题:找出单身狗1,2【建议收藏点赞】

目录 1. 单身狗12. 单身狗2 1. 单身狗1 代码实现&#xff1a; #include <stdio.h>int main() {int arr[] { 1,2,3,2,1 };int sz sizeof(arr) / sizeof(arr[0]);int i 0;int tmp 0;for (i 0; i < sz; i){tmp ^ arr[i];}printf("%d\n", tmp);return 0; …

微信小程序介绍、账号申请、开发者工具目录结构详解及小程序配置

目录 一、微信小程序介绍 1.什么是小程序&#xff1f; 2.小程序可以干什么&#xff1f; 3.微信小程序特点 二、账号申请 1.账号注册 2.测试号申请 三、安装开发工具 四、开发小程序 五、目录结构 JSON 配置 小程序配置 app.json 工具配置 project.config.json 页…

PHP毕业设计图片分享网站76t17

图片分享网站主要是为了提高工作人员的工作效率和更方便快捷的满足用户&#xff0c;更好存储所有数据信息及快速方便的检索功能&#xff0c;对系统的各个模块是通过许多今天的发达系统做出合理的分析来确定考虑用户的可操作性&#xff0c;遵循开发的系统优化的原则&#xff0c;…

Linux 查看 系统基本信息 uname

基本用法&#xff1a; 在终端中输入"uname"即可显示系统的内核名称。 可以结合不同的参数使用&#xff0c;获取更详细的系统信息。 常见参数&#xff1a; “-s”&#xff1a;显示操作系统名称。 “-n”&#xff1a;显示网络节点主机名。 “-r”&#xff1a;显示内核版…

【初中生讲机器学习】9. 我是怎么用朴素贝叶斯实现垃圾邮件分类的?真的超全!

创建时间&#xff1a;2024-02-14 最后编辑时间&#xff1a;2024-02-15 作者&#xff1a;Geeker_LStar 你好呀~这里是 Geeker_LStar 的人工智能学习专栏&#xff0c;很高兴遇见你~ 我是 Geeker_LStar&#xff0c;一名初三学生&#xff0c;热爱计算机和数学&#xff0c;我们一起加…

Java学习第十四节之多维数组和Arrays类讲解

多维数组 package array;public class ArrayDemo05 {public static void main(String[] args) {//[4][2] 面向对象/*1,2 array[0]2,3 array[1]3,4 array[2]4,5 array[3]*/int[][] array {{1,2},{2,3},{3,4},{4,5}};for (int i 0; i <array.length; i) {for (int…

Pandas数据库大揭秘:read_sql、to_sql 参数详解与实战篇【第81篇—Pandas数据库】

Pandas数据库大揭秘&#xff1a;read_sql、to_sql 参数详解与实战篇 Pandas是Python中一流的数据处理库&#xff0c;而数据库则是数据存储和管理的核心。将两者结合使用&#xff0c;可以方便地实现数据的导入、导出和分析。本文将深入探讨Pandas中用于与数据库交互的两个关键方…

Linux 基础/子目录分配/文件路径

在Linux系统中&#xff0c;整个系统只具有一个根目录“/”&#xff0c;用斜杠表示。根目录是整个文件系统的顶层目录&#xff0c;在他下面可以创建其他的目录和文件。 Linux中的子目录分配&#xff1a; /bin - 基本命令的二进制文件&#xff0c;这些命令可供所有用户使用&am…

数据结构第十四天(树的存储/双亲表示法)

目录 前言 概述 接口&#xff1a; 源码&#xff1a; 测试函数&#xff1a; 运行结果&#xff1a; 往期精彩内容 前言 孩子&#xff0c;一定要记得你的父母啊&#xff01;&#xff01;&#xff01; 哈哈&#xff0c;今天开始学习树结构中的双亲表示法&#xff0c;让孩…

SB+AVL——二刷错误总结

码云 SBTree insert中对头节点的处理 void Insert(int val){Node* node new Node(val);// 找插入位置if (_root nullptr){_root node;return;}else{Node* pre _root, *head _root;while (head){pre head;if (head->_val < val) head head->_right;else if (h…

P1259 黑白棋子的移动题解

题目 有2n个棋子排成一行&#xff0c;开始为位置白子全部在左边&#xff0c;黑子全部在右边&#xff0c;如下图为n5的情况&#xff1a; 移动棋子的规则是&#xff1a;每次必须同时移动相邻的两个棋子&#xff0c;颜色不限&#xff0c;可以左移也可以右移到空位上去&#xff0c…

【C++】内存管理方式--new/delete

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …