P1990 覆盖墙壁题解

题目

有一个长为N宽为2的墙壁,给你两种砖头:一个长2宽1,另一个是L型覆盖3个单元的砖头。如下图:

0  0
0  00

砖头可以旋转,两种砖头可以无限制提供。你的任务是计算用这两种来覆盖N×2的墙壁的覆盖方法。例如一个2×3的墙可以有5种覆盖方法,如下:

012 002 011 001 011  
012 112 022 011 001

注意可以使用两种砖头混合起来覆盖,如2×4的墙可以这样覆盖:

0112
0012

给定N,要求计算2×N的墙壁的覆盖方法。由于结果很大,所以只要求输出最后4位。例如2×13的覆盖方法为13465,只需输出3465即可。如果答案少于4位,就直接输出就可以,不用加前导0,如N=3时输出5。

输入输出格式

输入格式

一个整数N,表示墙壁的长。

输出格式

输出覆盖方法的最后4位,如果不足4位就输出整个答案。

输入输出样例

输入样例

13

输出样例

3465

解析

此题目采用递推,分好状态是一件非常重要的事情。使用F[N]表示铺满前N*2的面积的墙的方案数;“一列”指长为1,宽为2的墙壁。

1.当这面墙的最后一列被铺满时(如下图所示)

以这种状态结尾的方案数为F[N-1]。

2.当这面墙的最后两列被铺满时(如下图所示,注意颜色的区别)

以这种状态结尾的方案数为F[N-2]。

下面考虑L形的瓷砖,用数组G[N]来表示铺满前(N+1)*2的面积的墙,但是第(N+1)列有一个瓷砖已经被铺过(注意,是已经被铺过!)的方案数。

所以,下面这种情况的方案数就是G[N-2](因为实际上第N列已经铺满了,所以这里要处理的是前N-1列墙,所以多减了1)(如下图所示):

同理,这一种情况的方案数也是G[N-2]:

接下来解决,这个G数组应该怎么维护呢?

首先,第一种情况就是直接先让它变成一个长方形:

以这种状态结尾的方案数为F[N-3]。

第二种情况是,加上一块砖后,它仍然不是一个长方形:

那么第二种情况的方案数就是G[N-3]。

所以,G[N-2](注意,不是G[N])的方案数就等于F[N-3]+G[N-3]。

化简得到:G[N]=F[N-1]+G[N-1]。

所以,F[N]的转移方程就是:

F[N]=F[N-1]+F[N-2]+2*G[N-2](前面说过G[N-2]的情况有两种

而G[N]的转移方程就是:G[N]=F[N-1]+G[N-1]。

初始化:F[0]=1,G[0]=0;F[1]=G[1]=1;

#include<iostream>
using namespace std;
const int maxn=1000002;
const int mod=10000;
int f[maxn],g[maxn];
int main(){
	int n;
	cin>>n;
	f[0]=1;
	f[1]=g[1]=1;
	for(int i=2;i<=n;i++){
		f[i]=((f[i-1]+f[i-2])%mod+2*g[i-2]%mod)%mod;
		g[i]=(g[i-1]+f[i-1])%mod;
	}
	cout<<f[n];
	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/387156.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

petalinux2018.3安装步骤

1、虚拟机安装ubuntu-16.04.7-desktop-amd64.iso &#xff08;注意&#xff1a;安装ubuntu-18.04.6-desktop-amd64.iso和ubuntu-16.04.6-desktop-i386.iso会报以下错误&#xff09; environment: line 314: ((: 10 #15~1 > 10 #3: syntax error in expression (error toke…

幻兽帕鲁Palworld服务器设置参数(汉化)

创建幻兽帕鲁服务器配置参数说明&#xff0c;Palworld服务器配置参数与解释&#xff0c;阿腾云atengyun.com分享&#xff1a; 自建幻兽帕鲁服务器教程&#xff1a; 阿里云教程 https://t.aliyun.com/U/bLynLC腾讯云教程 https://curl.qcloud.com/oRMoSucP 幻兽帕鲁服务器 幻…

Mysql中关于on,in,as,where的区别

目录 Mysql on,in,as,where的区别 Mysql语句问题解决 1、left join数据筛选问题 2、相同数据重复筛选使用问题 3、根据某个字段排序取每个类别最后三条数据或前三条数据 4、业务逻辑书写位置问题 5、查找另一表内和本表相关字段的数量 6、关于union的使用 7、limit的巧…

2019年通信工程师初级 实务 真题

文章目录 一、第9章 通信动力与环境通信电源系统的主要功能&#xff1a;“供”、“配”、“储”、“发”、“变” 二、第2章 传输网三、第3章 接入网四、第4章 互联网 一、第9章 通信动力与环境 【问题一】 网络通信设备对动力与环境的质量要求可以归纳为 &#xff08;1&#…

剑指offer——二进制中1的个数

目录 1. 题目描述2. 可能引起死循环的想法3. 改进后的代码4. 给面试官惊喜的代码 1. 题目描述 请实现一个函数&#xff0c;输入一个整数&#xff0c;输出该数二进制表示中1的个数。例如把9表示成二进制位1001&#xff0c;有2位是1&#xff0c;因此如果输入9&#xff0c;该函数输…

今天:旧时是这样“破五迎福”

昨&#xff08;正月初四&#xff09;天&#xff0c;笔者——“ 人民体验官 ”&#xff0c; 为了推广人民日报官方微博文化产品所发表在10余个网站自媒体平台上的文章《今天&#xff1a;大年初四迎灶神爷》&#xff0c;不知何故被笔者寄居养老城市的自媒体论坛反复拒之门外&…

猫头虎分享已解决Bug || ImportError: cannot import name ‘relu‘ from ‘keras.layers‘

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

MATLAB知识点:fibonacci函数(★☆☆☆☆)返回斐波那契数列

​讲解视频&#xff1a;可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇&#xff08;数学建模清风主讲&#xff0c;适合零基础同学观看&#xff09;_哔哩哔哩_bilibili 节选自第3章&#xff1a;课后习题讲解中拓展的函数 在讲解第…

【刷题记录】——2024寒假day9编程题

本系列博客为个人刷题思路分享&#xff0c;有需要借鉴即可。 1.目录大纲&#xff1a; 2.题目链接&#xff1a; T1:LINK T2:LINK 3.详解思路&#xff1a; T1: 思路&#xff1a; /*** Note: The returned array must be malloced, assume caller calls free().*/#include<…

数据卷的常见命令,如何创建Nginx容器,修改nginx容器内的html目录下的index.html文件

数据卷 什么是数据卷 数据卷&#xff08;volume&#xff09;是一个虚拟目录&#xff0c;是容器内目录与宿主机**目录**之间映射的桥梁。 以Nginx为例&#xff0c;我们知道Nginx中有两个关键的目录&#xff1a; html&#xff1a;放置一些静态资源 conf&#xff1a;放置配置文…

MySQL数据库⑩_视图+MySQL用户管理(增删查改)

目录 1. 视图的概念和规则限制 2. 视图的基本使用 2.1 创建视图 2.2 修改视图影响基表 2.3 修改基表影响视图 2.4 删除视图 3. MySQL用户管理 3.1 用户信息 3.2 创建用户 3.3 修改用户密码 3.4 删除用户 4. 用户权限 4.1 MySQL权限 4.2 给用户授权 4.3 回收权限…

FastAI 之书(面向程序员的 FastAI)(八)

原文&#xff1a;www.bookstack.cn/read/th-fastai-book 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 第二十章&#xff1a;总结思考 原文&#xff1a;www.bookstack.cn/read/th-fastai-book/cedc7ab42349d210.md 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA…

单片机学习笔记---DS18B20温度读取

目录 OneWire.c 模拟初始化的时序 模拟发送一位的时序 模拟接收一位的时序 模拟发送一个字节的时序 模拟接收一个字节的时序 OneWire.h DS18B20.c DS18B20数据帧 模拟温度变换的数据帧 模拟温度读取的数据帧 DS18B20.h main.c 上一篇讲了DS18B20温度传感器的工作原…

imazing怎么连接苹果手机

imazing怎么连接苹果手机 要连接苹果手机&#xff0c;您可以选择使用数据线或无线网络&#xff08;Wi-Fi&#xff09;两种方式。以下是具体的步骤&#xff1a; 使用数据线连接&#xff1a; 准备工具&#xff1a;确保您的Mac或Windows电脑已经安装了iMazing软件&#xff0c;并且…

【十八】【C++】deque双端队列简单使用和deque底层实现探究(部分代码)

deque简单使用 在C中&#xff0c;双端队列&#xff08;Double-Ended Queue, deque&#xff09;是一种具有动态大小的序列容器&#xff0c;允许在两端快速插入和删除元素。与std::vector相比&#xff0c;std::deque提供了更加灵活的数据结构&#xff0c;特别是在需要频繁在序列…

基于Transformer的机器学习模型的主动学习

主动学习和基于Transformer的机器学习模型的结合为有效地训练深度学习模型提供了强有力的工具。通过利用主动学习&#xff0c;数据科学家能够减少训练模型所需的标记数据的数量&#xff0c;同时仍然达到高精度。本文将探讨基于Transformer的机器学习模型如何在主动学习环境中使…

Java图形化界面编程—— ImageIO 笔记

2.8.4 ImageIO的使用 在实际生活中&#xff0c;很多软件都支持打开本地磁盘已经存在的图片&#xff0c;然后进行编辑&#xff0c;编辑完毕后&#xff0c;再重新保存到本地磁盘。如果使用AWT要完成这样的功能&#xff0c;那么需要使用到ImageIO这个类&#xff0c;可以操作本地磁…

数字图像处理实验记录十(图像分割实验)

一、基础知识 1、什么是图像分割 图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程&#xff0c;特性可以是灰度、颜色、纹理等&#xff0c;目标可以对应单个区域&#xff0c;也可以对应多个区域。 2、图像分割是怎么实现的 图像分割算法基于像素值的不连…

Leetcode 115 不同的子序列

题意理解&#xff1a; 给你两个字符串 s 和 t &#xff0c;统计并返回在 s 的 子序列 中 t 出现的个数&#xff0c;结果需要对 109 7 取模。 即此题可以理解为&#xff1a;从s中删除元素去构造t,有多少种方法 或者也可以理解为&#xff1a;s中按顺序取t,有多少个 则一定有s和t…

HGAME 2024 WEEK2 Web方向题解 全

---------【WEEK-2】--------- What the cow say? 题目描述&#xff1a;the cow want to tell you something 注意title&#xff0c;Python的flask漏洞可多呢 版本310 先测一下SSTI 正常情况下 SSTI测试 变量渲染测试&#xff0c;被waf了&#xff0c;说明方向对了 单单过滤…