CMU和ETH联合研发了一个名为 「敏捷但安全」的新框架,为四足机器人在复杂环境中实现高速运动提供了解决方案

在高速机器人运动领域,实现同时兼顾速度和安全一直是一大挑战。但现在,卡内基梅隆大学(CMU)和苏黎世联邦理工学院(ETH)的研究团队带来了突破性进展。他们开发的新型四足机器人算法,不仅能在复杂环境中高速行进,还能巧妙避开障碍,真正做到了「敏捷而安全」。

在这里插入图片描述

论文地址: https://arxiv.org/pdf/2401.17583.pdf

在 ABS 的加持下,机器狗在各种场景下都展现出了惊艳的高速避障能力:

障碍重重的狭窄走廊:

在这里插入图片描述

凌乱的室内场景:
在这里插入图片描述

无论是草地还是户外,静态或动态障碍,机器狗都从容应对:

在这里插入图片描述

遇见婴儿车,机器狗灵巧躲闪开:

在这里插入图片描述

警告牌、箱子、椅子也都不在话下:

在这里插入图片描述

对于突然出现的垫子和人脚,也能轻松绕过:

在这里插入图片描述

机器狗甚至还可以玩老鹰捉小鸡:

在这里插入图片描述

ABS 突破性技术:

RL+ Learning model-free Reach-Avoid value

ABS 采用了一种双策略(Dual Policy)设置,包括一个「敏捷策略」(Agile Policy)和一个「恢复策略」(Recovery Policy)。敏捷策略让机器人在障碍环境中快速移动,而一旦 Reach-Avoid Value Estimation 检测到潜在危险(比如突然出现的婴儿车),恢复策略就会介入,确保机器人安全。

在这里插入图片描述

创新点 1:怎么训练一个敏捷策略 Agile Policy?

敏捷策略的创新之处在于,与以往简单地追踪速度指令不同,它采用目标达成(position trakcing)的形式来最大化机器人的敏捷性。这一策略训练机器人发展出感知运动技能,以在没有碰撞的情况下达到指定目标。通过追求基座高速度的奖励条件,机器人自然学会在避免碰撞的同时实现最大敏捷性。这种方法克服了传统速度追踪(velocity tracking)策略在复杂环境中可能的保守限制,有效提高了机器人在障碍环境中的速度和安全性。Agile Policy 在实机测试中极速达到了 3.1m/s

在这里插入图片描述

创新点 2:学习 Policy-conditioned reach-avoid value

「达防」(Reach-Avoid, RA)值学习的创新之处在于,它采用了无模型的方式学习,与传统的基于模型的可达性分析方法不同,更适合无模型的强化学习策略。此方法不是学习全局 RA 值,而是使其依赖于特定策略,这样可以更好地预测敏捷策略的失败。通过简化的观测集,RA 值网络可以有效地概括并预测安全风险。RA 值被用于指导恢复策略,帮助机器人优化运动以避免碰撞,从而实现在保证安全的同时提高敏捷性的目标。

下图展示了针对特定障碍物集合学习到的 RA(达防)值。随着机器人速度的变化,RA 值的分布景观也相应变化。RA 值的符号合理地指示了敏捷策略的安全性。换句话说,这张图通过不同的 RA 值展示了机器人在不同速度下,面对特定障碍物时的安全风险程度。RA 值的高低变化反映了机器人在不同状态下执行敏捷策略时可能遇到的安全风险。

在这里插入图片描述

创新点 3:用 Reach-Avoid Value 和恢复策略来拯救机器人

恢复策略的创新之处在于,它能使四足机器人快速追踪线速度和角速度指令,作为一种备用保护策略。与敏捷策略不同,恢复策略的观测空间专注于追踪线速度和角速度命令,不需要外部感知信息。恢复策略的任务奖励专注于线性速度追踪、角速度追踪、保持存活和保持姿势,以便平滑切换回敏捷策略。这种策略的训练同样在仿真环境中进行,但有特定的域随机化和课程设置,以更好地适应可能触发恢复策略的状态。这种方法为四足机器人提供了在高速运动中快速应对潜在失败的能力。

在这里插入图片描述

下图展示了当恢复策略在两个特定情况(I 和 II)下被触发时,RA(达防)值景观的可视化展示。这些可视化展示是在 vx(沿 x 轴的速度)与 ωz(绕 z 轴的角速度)平面以及 vx 与 vy(沿 y 轴的速度)平面上进行的。图中显示了搜索前的初始旋转状态(即机器人基座当前的旋转状态)和通过搜索得到的命令。简单来说,这些图表展示了在特定条件下,通过恢复策略搜索得到的最佳运动指令,以及这些指令如何影响 RA 值,从而反映机器人在不同运动状态下的安全性。

鲁棒性测试

作者在「12kg 负载 / 篮球撞击 / 脚踢 / 雪地」的四个场景下测试了 ABS 框架的鲁棒性,机器狗都从容应对:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/387064.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode 452. 用最少数量的箭引爆气球435. 无重叠区间

class Solution {public int findMinArrowShots(int[][] points) {Arrays.sort(points,(o1,o2)->Integer.compare(o1[0], o2[0]));int count1;//箭的数量for(int i1;i<points.length;i) {if(points[i][0]>points[i-1][1]) {count;//边界没重合&#xff0c;又需要一支箭…

如何重新安装 macOS

你可以使用电脑的内建恢复系统“macOS 恢复”来重新安装 Mac 操作系统。不但简单快捷&#xff0c;而且重新安装后不会移除你的个人数据。 将 Mac 关机 选取苹果菜单  >“关机”&#xff0c;然后等待 Mac 关机。如果你无法将 Mac 关机&#xff0c;请按住它的电源按钮最长 …

第六篇:MySQL图形化管理工具

经过前五篇的学习&#xff0c;对于数据库这门技术的理解&#xff0c;我们已经在心中建立了一个城堡大致的雏形&#xff0c;通过命令行窗口&#xff08;cmd&#xff09;快速上手了【SQL语法-DDL-数据定义语言】等相关命令 道阻且长&#xff0c;数据库技术这一宝藏中还有数不清的…

猫头虎分享: 探索软件系统架构的革新之路

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

Swift Combine 网络受限时从备用 URL 请求数据 从入门到精通十四

Combine 系列 Swift Combine 从入门到精通一Swift Combine 发布者订阅者操作者 从入门到精通二Swift Combine 管道 从入门到精通三Swift Combine 发布者publisher的生命周期 从入门到精通四Swift Combine 操作符operations和Subjects发布者的生命周期 从入门到精通五Swift Com…

python 基础知识点(蓝桥杯python科目个人复习计划40)

今日复习内容&#xff1a;矩阵乘法&#xff0c;高斯消元 哈哈&#xff0c;我来干回老本行&#xff0c;复习点儿数学类专业学的东西 因为电脑上制作费时间&#xff0c;所以我直接用我的《高等代数》和《数值分析》笔记。 一.矩阵乘法 例题1&#xff1a;矩阵相乘 题目描述&am…

three.js 细一万倍教程 从入门到精通(三)

目录 五、详解PBR材质纹理 5.1、详解PBR物理渲染 5.2、标准网格材质与光照物理效果 5.3、置换贴图与顶点细分设置 5.4、设置粗糙度与粗糙度贴图 5.5、设置金属度与金属贴图 5.6、法线贴图应用 5.7、如何获取各种类型纹理贴图 5.8、纹理加载进度情况 单张图片加载 多…

Java学习手册——第七篇基础语法

Java学习手册——第七篇基础语法 1. 注释2. 顺序语句3. 条件语句3.1 if语句3.2 switch语句 4. 循环语句4.1 for循环4.2 while 语句4.3 do...while语句 本篇为大家快速入门Java基础语法&#xff0c;了解一个语言的基础语法是必要的&#xff0c; 因为我们后期都是需要用这些基础语…

基于CU,PO,RD,IPO矩阵图分析数据资产-自创

术语 数据资产&#xff1a;数据资产是具有价值的数据资源。没有价值的数据资源&#xff0c;通过采集&#xff0c;整理&#xff0c;汇总等加工后&#xff0c;也可以成为具有直接或间接价值的数据资产。传统企业逐渐数字化转型&#xff0c;尤其是互联网企业&#xff0c;都十分重视…

文献速递:肿瘤分割---- 弱监督肝肿瘤分割,使用Couinaud区段标注

文献速递&#xff1a;肿瘤分割---- 弱监督肝肿瘤分割&#xff0c;使用Couinaud区段标注 01 文献速递介绍 肝癌是世界上导致癌症死亡的主要原因之一&#xff0c;也是第二大常见的癌症死因。本稿件于2021年10月28日收到&#xff0c;2021年11月24日修订&#xff0c;2021年12月1…

[Linux开发工具]项目自动化构建工具-make/Makefile

&#x1f4d9; 作者简介 &#xff1a;RO-BERRY &#x1f4d7; 学习方向&#xff1a;致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f4d2; 日后方向 : 偏向于CPP开发以及大数据方向&#xff0c;欢迎各位关注&#xff0c;谢谢各位的支持 目录 1.背景2.依赖关系和依…

【制作100个unity游戏之23】实现类似七日杀、森林一样的生存游戏17(附项目源码)

本节最终效果演示 文章目录 本节最终效果演示系列目录前言制作木板UI直接复制和工具一样的即可检查背包是否有指定数量的空插槽 源码完结 系列目录 前言 欢迎来到【制作100个Unity游戏】系列&#xff01;本系列将引导您一步步学习如何使用Unity开发各种类型的游戏。在这第23篇…

品牌之门:概率与潜力的无限延伸

在品牌的世界里&#xff0c;每一个成功的推广都像是打开一扇门&#xff0c;从未知走向已知&#xff0c;从潜在走向显现。这扇门&#xff0c;既是品牌的起点&#xff0c;也是品牌发展的无限可能。 品牌&#xff0c;就像一扇紧闭的门&#xff0c;它静静地矗立在那里&#xff0c;…

toString()、equals()、clone()用法

Java中所有类的对象都可以直接使用Object类中提供的一些方法 1. toString()&#xff1a;返回对象的字符串表示形式&#xff0c;通常在类中重写&#xff0c;以便于返回的是对象的内容 2. equals()&#xff1a;判断两个对象的地址是否相等&#xff0c;直接使用也一样&#xff0c;…

【蓝桥杯】灭鼠先锋

一.题目描述 二.解题思路 博弈论&#xff1a; 只能转移到必胜态的&#xff0c;均为必败态。 可以转移到必败态的&#xff0c;均为必胜肽。 最优的策略是&#xff0c;下一步一定是必败态。 #include<iostream> #include<map> using namespace std;map<string,bo…

【Linux系统学习】6.Linux系统软件安装

实战章节&#xff1a;在Linux上部署各类软件 前言 为什么学习各类软件在Linux上的部署 在前面&#xff0c;我们学习了许多的Linux命令和高级技巧&#xff0c;这些知识点比较零散&#xff0c;进行练习虽然可以基础掌握这些命令和技巧的使用&#xff0c;但是并没有一些具体的实…

C++:priority_queue模拟实现

C&#xff1a;priority_queue模拟实现 什么是priority_queue模拟实现向上调整算法向下调整算法插入与删除 仿函数 什么是priority_queue priority_queue称为优先级队列。优先级队列是一种特殊的队列&#xff0c;其中每个元素都有一个相关的优先级。元素的优先级决定了它们在队…

NSSCTF Round#18 RE GenshinWishSimulator WP

恶搞原神抽卡模拟器 看到软件的界面&#xff0c;大致有三种思路&#xff1a; 修改石头数量一直抽&#xff0c;如果概率正常肯定能抽到&#xff08;但是估计设置的概率是0&#xff09;在源码里找flag的数据把抽卡概率改成100%直接抽出来 Unity逆向&#xff0c;根据经验应该dnsp…

助眠神器小程序源码|白噪音|小睡眠|微信小程序前后端开源

安装要求和说明后端程序运行环境&#xff1a;NginxPHP7.4MySQL5.6 PHP程序扩展安装&#xff1a;sg11 网站运行目录设置为&#xff1a;public 伪静态规则选择&#xff1a;thinkphp 数据库修改文件路径&#xff1a;/config/database.php需要配置后端的小程序配置文件&#xff0c;…

力扣hot1--哈希

推荐一个博客&#xff1a; 一文看懂哈希表并学会使用C STL 中的哈希表_哈希表end函数-CSDN博客 哈希做法&#xff1a; 我们将nums[i]记为key&#xff0c;将i记为value。 判断target-nums[i]是否在哈希表中&#xff0c;如果在说明这两个值之和为target&#xff0c;那么返回这两…