四、机器学习基础概念介绍

四、机器学习基础概念介绍

  • 1_机器学习基础概念
    • 机器学习分类
    • 1.1 有监督学习
    • 1.2 无监督学习
  • 2_有监督机器学习—常见评估方法
    • 数据集的划分
    • 2.1 留出法
    • 2.2 校验验证法(重点方法)
      • 简单交叉验证
      • K折交叉验证(单独流出测试集)(常用方法/Sklearn的默认方法)
      • k折交叉验证(不单独留出测试集)
      • 留一法交叉验证
      • Subject-wise交叉验证
    • 2.3 bootstrap自助法
  • 3_ 有监督机器学习—学习评价指标
    • 3.1 准确率(Accuracy)
    • 混淆矩阵
    • 3.2 精确率(Precision)
    • 3.3 召回率(Recall)
    • 3.4 特异度(Specificity)
    • 3.5 F1-值(F1-score)
    • 3,6 ROC曲线
    • 3.7 AUC面积
    • 3.8 PR曲线

1_机器学习基础概念

机器学习一般可以分为训练和测试两个步骤。
训练:让模型学习数据的特点。
测试:让模型对新的数据进行预测,对比预测结果与实际结果之间的差异。
训练集:这批数据是供模型学习使用。
测试集:这批数据是供模型测试使用。
一般情况训练集和测试集是完全不相同的,训练集和测试集发生重叠是一个严重错误!

机器学习分类

1)按照学习方式

  • 有监督学习:训练数据包含了数据本身及其对应的标签。每个训练数据都有一个明确的标识或结果。
  • 无监督学习:训练数据只包含数据本身,不包含对应的标签。例如通过聚类算法对很多段EEG信号进行聚类分析。模型能够自主的学习到一些数据的特点。(通常缺乏先验知识,因此难以对数据进行标注或者标注成本太高)
  • 半监督学习:部分训练数据有标签,部分训练数据没有标签。
  • 强化学习:强化学习的标签可以不是一个明确的标识或结果。 一般是一个反馈或者奖励。

2)按照算法的原理

  • 传统的机器学习(不包含任何人工神经网络结构,此文章的重点)
  • 深度学习

1.1 有监督学习

监督学习一般解决两个问题:分类和回归
1) 分类和回归是做什么的

  • 无论是分类还是回归,其本质都是对输入进行预测,都是有监督学习。
  • 分类是根据输出得到一个分类的类别,而回归是根据输出得到一个具体的值。

2)分类和回归的区别

  • 分类问题的输出的物体所属的类别,而回归问题的输出是物体的值。
  • 分类问题的输出是离散值(0,1,2,3,…),回归问题输出的是连续值(36.7,36.8,…)
  • eg:输入是一堆气象数据:
    如果输出是具体的天气情况:雨天?晴天?阴天? —分类—
    如果输出是具体的温度? —回归—

3)有监督学习有哪些
在这里插入图片描述

1.2 无监督学习

无监督学习一般解决两个问题:聚类和降维
1)聚类

  • 在无监督学习中,数据不会带有任何标签。将这些无标签数据分成N个分开点集(称为簇)的算法,就被称为聚类算法。
  • 常用聚类算法:K均值聚类和层次聚类
  • 聚类和分类的区别:分类是有标签的,每个物体有其具体的明确的归属。而聚类是没有标签的,根据算法不同可能会得到不通过的结果。

2)降维

  • 采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。
  • 降维是对数据本身处理,不需要标签。
  • 常用降维算法:PCA、张量分解。

2_有监督机器学习—常见评估方法

常见的评估方法有:留出法、校验验证法和自助法

数据集的划分

  • 第一种:训练集和测试集(不建议适用)
  • 第二种:训练集、验证集和测试集(正确的数据集划分方法)

训练集——学生的课本;学生 根据课本里的内容来掌握知识。
验证集——作业,通过作业可以知道 不同学生学习情况、进步的速度快慢。
测试集——考试,考的题是平常都没有见过,考察学生举一反三的能力。

正确做法: 在训练集上训练模型,在验证集上评估模型(对模型进行参数调整),最后在测试集上测试模型。

2.1 留出法

  • 将数据集D分割为两个互斥的集合:训练集S和测试集T。
  • 其中训练集S还可以进一步划分为训练集S1和验证集V。
  • 数据集划分完毕后,直接在训练集S上训练模型,在验证集S1上评估模型,在测试集T上测试模型即可。

一般情况下,会选择20%左右的数据作为测试集。
缺点:数据选择随机,结果的方差比较大

2.2 校验验证法(重点方法)

校验验证法:能充分利用数据集,但不适用于特别大的数据集

  • 一般分为:简单交叉验证,留一法交叉验证和K折交叉验证
  • 其中,K折交叉验证(单独流出测试集)(该方法为常用方法,Sklearn的默认方法)

简单交叉验证

  • 将样本全部打乱,随机的将样本数据集分为互斥的两个部分:训练集和测试集。其中训练集还可以划分为训练集和验证集。
  • 通过训练集训练模型,通过验证集选择模型参数,在测试集上评估模型的分类率。
  • 接着重新把样本数据打乱,重新划分训练集和测试集。重复上述过程若干次,此时将会得到若千个分类率。
  • 选择最大的分类率作为最终分类率。

等价于将留出法重复n次,通常用于模型预筛,可作为论文中探讨模型选择的一部分。

K折交叉验证(单独流出测试集)(常用方法/Sklearn的默认方法)

  • 将样本全部打乱,随机从样本数据集划分出互斥的两部分:训练集和测试集。从训练集D分类K大小相似的互斥子集。
  • 每次选用K-1个子集作为训练集,余下的那个子集作为验证集。这样就得到了K组训练/验证集,从而可以进行 K次训练和验证,可以返回K个模型。
  • 在测试集上分别对K个模型进行测试得到分类率,最终K次测试中分类率的均值作为最终分类率。

在这里插入图片描述k为几就是几折交叉验证,通常五折/十折。

k折交叉验证(不单独留出测试集)

在这里插入图片描述

  • 单独留出测试集的交叉验证会在进行交叉验证前单独留出测试集,后续所有的交叉验证都会最终在测试集上进行测试。
  • 而不单独留出测试集的折交叉验证不会单独留出测试集,训练集、验证集和测试集将一会通过“交叉”产生。
  • 数据量比较多,10折。10000个样本,

留一法交叉验证

  • 当K折交叉验证中的K与样本个数N相等时,此时该验证方法被称为“留一法”。
  • 理论上,留一法对数据的利用最为充分,其结果最接近实际的结果。如果样本数据比较大,会带来极大的计算量,因此留一法一般只适用于小样本量数据集。最终K个模型分类率的均值作为最终分类率。
  • 注意:在神经科学领域,一般使用留一被试法
  • 留一被试法:将同一个被试的所有的样本视为一个特定的集合,每次选择一个被试的样本作为测试集,其他被试的样本作为训练集。

Subject-wise交叉验证

在这里插入图片描述在这里插入图片描述

2.3 bootstrap自助法

3_ 有监督机器学习—学习评价指标

3.1 准确率(Accuracy)

在这里插入图片描述
准确率能够清晰的判断我们模型的表现,但有一个严重的缺陷: 在正负样本不均衡的情况下,占比大的类别往往会成为影响 Accuracy 的最主要因素,此时的 Accuracy 并不能很好的反映模型的整体情况。
例如,一个测试集有正样本99个,负样本1个。模型把所有的样本都预测为正样本,那么模型的Accuracy为99%,看评价指标,模型的效果很好,但实际上模型没有任何预测能力。

混淆矩阵

TP = True Postive = 真阳性; FP = False Positive = 假阳性
FN = False Negative = 假阴性; TN = True Negative = 真阴性
比如我们一个模型对15个样本进行预测,然后结果如下。
真实值:0 1 1 0 1 1 0 0 1 0 1 0 1 0 0
预测值:1 1 1 1 1 0 0 0 0 0 1 1 1 0 1
在这里插入图片描述

3.2 精确率(Precision)

精度(precision, 或者PPV,,positive predictive value) = TP / (TP + FP)
在上面的例子中,精度=5/(5+4)= 0.556
在这里插入图片描述

3.3 召回率(Recall)

·召回(recall,或者敏感度,sensitivity,真阳性率,TPR,True Positive Rate)= TP /(TP +FN)
在上面的例子中,召回=5/(5+2) = 0.714

在这里插入图片描述

3.4 特异度(Specificity)

特异度(specificity,或者真阴性率,TNR,True Negative Rate) = TN / (TN + FP)
在上面的例子中,特异度 = 4 / (4+2) = 0.667

3.5 F1-值(F1-score)

F1-值(F1-score) = 2TP / (2TP+FP+FN)
精确率和召回率是一对矛盾的指标,因此需要放到一起综合考虑。F1-score是精确率和召回率的调和平均值。
相对于ACC的优势:能够同时表明模型对正负样本的预测能力
在上面的例子中,F1-值 = 25 / (25+4+2) = 0.625
在这里插入图片描述

  • 敏感度和特异度有何用?
    特异度(specificity),TNR,即它反映筛检试验确定非病人的能力。
    敏感度(sensitivity,召回率),TPR,即它反映筛检试验确定病人的能力。
    敏感度高=漏诊率低,特异度高=误诊率低。
    例如:核酸检测允许比较高的误诊率,但漏诊率低一定要很低。

3,6 ROC曲线

ROC曲线(横轴:FPR;纵轴:TPR)该曲线越接近左上角越好
TPR = TP / (TP+FN); 真阳率
FPR = FP / (FP + TN); 伪阳率
在这里插入图片描述

3.7 AUC面积

AUC(ROC与坐标轴围成图像的面积)
AUC = 1,是完美分类器。
AUC = [0.85, 0.95], 效果很好
AUC = [0.7, 0.85], 效果一般
AUC = [0.5, 0.7],效果较低,但用于预测股票已经很不错了
AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。
AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。

3.8 PR曲线

(仅供了解,横轴是recall,纵轴是precision,越接近右上角越好)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/380307.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

江科大STM32 终

目录 SPI协议10.1 SPI简介W25Q64简介10.3 SPI软件读写W25Q6410.4 SPI硬件外设读写W25Q64 BKP备份寄存器、PER电源控制器、RTC实时时钟11.0 Unix时间戳代码示例&#xff1a;读写备份寄存器BKP11.2 RTC实时时钟 十二、PWR电源控制12.1 PWR简介代码示例&#xff1a;修改主频12.3 串…

arkTS开发鸿蒙OS应用(登录页面实现,连接数据库)

前言 喜欢的朋友可在抖音、小红书、微信公众号、哔哩哔哩搜索“淼学派对”。知乎搜索“编程淼”。 前端架构 Toubu.ets import router from ohos.router Component export struct Header{build(){// 标题部分Row({space:5}){Image($r(app.media.fanhui)).width(20).onClic…

Mysql-数据库优化-客户端连接参数

客户端参数 原文地址 # 连接池配置 # 初始化连接数 spring.datasource.druid.initial-size1 # 最小空闲连接数&#xff0c;一般设置和initial-size一致 spring.datasource.druid.min-idle1 # 最大活动连接数&#xff0c;一个数据库能够支撑最大的连接数是多少呢&#xff1f; …

【Spring】springmvc如何处理接受http请求

目录 ​编辑 1. 背景 2. web项目和非web项目 3. 环境准备 4. 分析链路 5. 总结 1. 背景 今天开了一篇文章“SpringMVC是如何将不同的Request路由到不同Controller中的&#xff1f;”&#xff1b;看完之后突然想到&#xff0c;在请求走到mvc 之前服务是怎么知道有请求进来…

使用QT编写一个简单QQ登录界面

widget.cpp #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);//设置窗口标题this->setWindowTitle("QQ");//设置窗口图标this->setWindowIcon(…

3.2-媒资管理之MinIo分布式文件系统+上传图片

媒资管理 3 分布式文件系统 3.1 什么是分布式文件系统 要理解分布式文件系统首先了解什么是文件系统。 查阅百度百科&#xff1a; 文件系统是负责管理和存储文件的系统软件&#xff0c;操作系统通过文件系统提供的接口去存取文件&#xff0c;用户通过操作系统访问磁盘上的文…

5.常量和数据类型(数字类型,字符串类型,模板字符串,布尔类型undefined,null检测数据类型),类型转化

什么是常量 常量就是不能改变的量&#xff0c;就是向计算机内存要一款空间然后存储的东西不能改变用const声明并且一定要初始化值 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-C…

SAP-PS-001-006问题预算占用与订单实际金额不一致

前言 PS模块最复杂的业务场景主要就是ETO&#xff08;Engineering-To-Order&#xff09;&#xff0c;也就是边设计边生产边采购的三边业务。 意味着从前端设计开始的成本就已经要进行收集&#xff0c;其次对于大型非标设备的生产发货只是一个环节&#xff0c;发货后还会涉及到现…

STL之stack+queue的使用及其实现

STL之stackqueue的使用及其实现 1. stack&#xff0c;queue的介绍与使用1.1stack的介绍1.2stack的使用1.3queue的介绍1.4queue的使用 2.stack&#xff0c;queue的模拟实现2.1stack的模拟是实现2.2queue的模拟实现 3.总结 所属专栏&#xff1a;C“嘎嘎" 系统学习❤️ &…

API网关架构设计与实现的经验总结与实践

API网关是现代微服务架构中的重要组件&#xff0c;它充当了前端和后端微服务之间的中介。本文将介绍API网关的架构设计原则和实现方法&#xff0c;以帮助开发人员更好地理解和应用这些技术。 1. 什么是API网关&#xff1f; - 解释了API网关的基本概念和作用&#xff0c;以及…

【c++入门】母牛生小牛

说明 有一头小母牛&#xff0c;从出生第四年起每年生一头小母牛&#xff0c;按此规律&#xff0c;第N年时有几头母牛&#xff1f; 输入数据 只有一个整数N&#xff0c;独占一行。(1≤N≤50) 输出数据 对每组数据&#xff0c;输出一个整数&#xff08;独占一行&#xff09;…

SAP-PS-02-003跨系统/Client请求传输和请求副本的创建

前言 某公司SAP服务器架构如下&#xff08;举例&#xff09;&#xff0c;一般进行SAP项目实施基本会遵循以下的系统和Client准则&#xff0c;那在不同系统和Client要如何进行请求传输呢 服务器 Client 作用 要求 DEV 100 业务顾问进行系统配置 所有配置均在该Client进行…

如何用Hexo搭建一个优雅的博客

引言 在数字化时代&#xff0c;拥有一个个人博客已经成为许多人展示自己技能、分享知识和与世界互动的重要方式。而在众多博客平台中&#xff0c;Hexo因其简洁、高效和易于定制的特点而备受青睐。本文将详细介绍如何从零开始搭建一个Hexo博客&#xff0c;让你的个人博客在互联…

synchronized关键字的底层原理

一、synchronized的使用方式 在语法上&#xff0c;要使用synchronized关键字&#xff0c;需要把任意一个非null对象作为"锁"对象&#xff0c;也就是需要一个对象监视器&#xff08;Object Monitor&#xff09;。总的来说有三种用法&#xff1a; 1.1 作用在实例方法…

【C++第二阶段】运算符重载-【+】【cout】【++|--】

你好你好&#xff01; 以下内容仅为当前认识&#xff0c;可能有不足之处&#xff0c;欢迎讨论&#xff01; 文章目录 运算符重载加法运算符重载重载左移运算符递增|减运算符重载 运算符重载 加法运算符重载 What 普通的加减乘除&#xff0c;只能应付C中已给定的数据类型的运…

如何像工程师一样阅读 - 快速阅读技术书籍的9个技巧

0. 目的 在看了 Read Like an Engineer: 9 Tips for Reading Technical Books Fast 之后&#xff0c; 记录一些个人的看法&#xff0c;并在这篇英文文章上作为实验&#xff0c; 记录一下正确的阅读方法。 1. 第一次阅读 1.1 生词表 parcel of the job: 工作中必不可少的部分…

OpenCV-33 开运算和闭运算

目录 一、开运算 二、闭运算 三、形态学梯度 开运算和闭运算都是腐蚀和膨胀的基本应用。 一、开运算 开运算 腐蚀膨胀(腐蚀之后再膨胀) 开运算提供了另一种去除噪声的思路。&#xff08;腐蚀先进行去噪&#xff0c;膨胀再还原图像&#xff09; 通过API --- morphologyE…

面试经典150题——两数之和 II - 输入有序数组

"The only limit to our realization of tomorrow will be our doubts of today." - Franklin D. Roosevelt 1. 题目描述 2. 题目分析与解析 2.1 思路一——暴力求解 暴力求解的思路就是通过两次for循环&#xff0c;外层循环遍历整个数组&#xff0c;内层循环遍…

CSP-202109-1-数组推导

CSP-202109-1-数组推导 解题思路 如果 currentValue 与 previousValue 相同&#xff0c;说明这个值不是一个独特的新值&#xff0c;因此只将它加到 sumTotal 上。如果 currentValue 与 previousValue 不相同&#xff0c;说明这是一个新的独特值&#xff0c;因此既将它加到 su…

精简还是全能?如何在 Full 和 Lite 之间做出最佳选择!关于Configuration注解的Full模式与Lite模式(SpringBoot2)

&#x1f3c3;‍♂️ 微信公众号: 朕在debugger© 版权: 本文由【朕在debugger】原创、需要转载请联系博主&#x1f4d5; 如果文章对您有所帮助&#xff0c;欢迎关注、点赞、转发和订阅专栏&#xff01; 前言 关于 Configuration 注解&#xff0c;相信在座的各位 Javaer 都…