【数据结构】堆(创建,调整,插入,删除,运用)

目录

堆的概念:

堆的性质:

堆的存储方式:

堆的创建 : 

堆的调整:

向下调整:

向上调整:

堆的创建:

建堆的时间复杂度:

 向下调整:

向上调整:

堆的插入与删除:

 堆的插入:

堆的删除:

堆的应用:

1.PriorityQueue的实现

2.堆排序:

3.Top-k问题 

结语:


堆的概念:

如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储 在一 个一维数组中,并满足:Ki = K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质:

(1)堆中某个节点的值总是不大于(大根堆)或不小于(小根堆)其父节点的值。

(2)堆总是一棵完全二叉树。

具体如下图。 

 

堆的存储方式:

 从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储。

注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节点,就会导致空间利用率比较低。

将元素存储到数组中后,可以根据二叉树章节的性质对树进行还原。假设i为节点在数组中的下标,则有:

(1)如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2.

(2)如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子。

(3)如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子。

堆的创建 : 

为了使文章可读性更高下面给出测试堆类的基本代码,下面文章给出的代码均围绕这上面来。

elem:是一个类里面的数组(方便后序操作)

usedSize:是记录数组里面有多少个元素(不是数组容量)

TestHeap:构造方法为了简便把数组容量设为10,大小可以自己调整

initElem:初始化

public class TestHeap {
    public int[] elem;
    public int usedSize;
    public TestHeap(){
        elem = new int[10];
    }
    public void initElem(int[] array){
        for(int i = 0;i < array.length;i++){
            elem[i] = array[i];
            usedSize++;
        }
    }
}

堆的调整:

堆有向上调整向下调整两种调整方式,在创建时我们采用向下调整方式,这样的时间复杂度比较低。故下面主要讲解向下过程(以大堆为例) 步骤如下:

向下调整:

1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)。

2. 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在。

(1)parent右孩子是否存在,存在找到左右孩子中最小的孩子,让child进行标记。

(2)将parent与较小的孩子child比较,如果:

a:parent小于较小的孩子child,调整结束。

b:否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子 树不满足对的性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续。

 以数组{ 27,15,19,18,28,34,65,49,25,37 }为例调整完变成。

对应的代码如下:

如果想要转换成小堆的话把大于号小于号改一改即可,故下面不在过多描述。

private void siftDown1(int parent,int end){
        int child = parent*2+1;
        while(child < end){
            if(child+1 < usedSize && elem[child] < elem[child+1]){
                child++;
            }
            if(elem[child] > elem[parent]){
                swap(child,parent);
                parent = child;
                child = parent*2+1;
            }else{
                break;
            }
        }
    }

 为了使代码整洁故再实现一个swap方法。

private void swap(int i,int j){
        int tmp = elem[i];
        elem[i] = elem[j];
        elem[j] = tmp;
    }

注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。 时间复杂度分析:最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O(logn)log下标是以2为底的。

向上调整:

具体过程如图(按照插入的80走的路径):

代码如下:

先找新结点的parent的下标再child大于0的情况下循环进行比较交换,一旦发现不满足条件的立刻跳出循环,因为在使用向上调整之前堆已经排序好了。

public void siftUp(int child){
        int parent = (child-1)/2;
        while(child > 0){
            if(elem[child] > elem[parent]){
                swap(child,parent);
                child = parent;
                parent = (child-1)/2;
            }else{
                break;
            }
        }
    }

堆的创建:

如图所示是从最后一个结点的父亲结点开始遍历每一个结点都调用siftdown1进行向下调整,之后不断减减直到小于0(下标)。

代码如下:

 public void createBigHeap(){
        for(int parent = (usedSize-1-1)/2;parent >= 0;parent--){
            siftDown1(parent,usedSize);
        }
    }

运行结果:

通过观察elem的元素我们可以发现向下调整成功。💖

建堆的时间复杂度:

 向下调整:

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是 近似值,多几个节点不影响最终结果):如图:

向上调整:

如图:

经过比较我们选择时间复杂度较低的来进行堆的创建即向下调整,至于向上调整我们用于堆的堆的插入与删除。

堆的插入与删除:

 堆的插入:

堆的插入总共需要两个步骤:

(1)先将元素放入到底层空间中(注意:空间不够时需要扩容).

(2)将最后新插入的节点向上调整,直到满足堆的性质.

代码如下:

isFull用来判断是否需要扩容

public boolean isFull(){
        return usedSize == elem.length;
    }

siftUp用来向上调整,先找到新参数的parent结点, 传入siftup的参数为新offer进来的参数。

 public void offer(int val){
        //1.判断满
        if(isFull()){
            this.elem = Arrays.copyOf(elem,elem.length*2);

        }
        elem[usedSize] = val;
        usedSize++;
        siftUp(usedSize-1);
    }

运行结果如下:

我们可以发现成功增加数据并完成排序。

堆的删除:

注意:堆的删除一定删除的是堆顶元素。具体如下:

(1) 将堆顶元素对堆中最后一个元素交换。

(2) 将堆中有效数据个数减少一个。

(3)对堆顶元素进行向下调整 。

 代码如下:

其实就是把最后一个元素的空间腾出来。

public int poll(){
        int tmp = elem[0];
        swap(0,usedSize-1);
        usedSize--;
        siftDown1(0,usedSize);
        return tmp;
    }

运行结果如下:

可以看到65被成功删除并且数组的序列没有改变

堆的应用:

1.PriorityQueue的实现

可以使用堆来实现优先队列,由于java语言有自带的优先队列故这里不在实现给出它的常用方法直接调用即可。

函数名功能介绍
boolean offer(E e)插入元素e,插入成功返回true,如果e对象为空,抛出NullPointerException异常,注意:空间不够时候会进行扩容
E peek()获取优先级最高的元素,如果优先级队列为空,返回null
E poll()移除优先级最高的元素并返回,如果优先级队列为空,返回null
int size()获取有效元素的个数
void clear()清空
boolean isEmpty()检测优先级队列是否为空,空返回true

2.堆排序:

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

1. 建堆

升序:建大堆

降序:建小堆

2. 利用堆删除思想来进行排序

建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

具体过程如下:

代码后序会将8大排序整理成一篇排序专项。

3.Top-k问题 

TOP-K问题:即求数据集合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。 对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都 不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

1. 用数据集合中前K个元素来建堆

(1)前k个最大的元素,则建小堆.

(2)前k个最小的元素,则建大堆。

2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

不要用Arrays.sort来做这道题,因为这是一道面试题,用sort就可以快速结束面试,回家等通知了。

top-k问题

使用堆的AC优化代码:

class Imp implements Comparator<Integer>{
    @Override
    public int compare(Integer o1,Integer o2){
        return o2.compareTo(o1);
    }

}
class Solution {
    public int[] smallestK(int[] arr, int k) {
        Imp imp = new Imp();
        PriorityQueue<Integer> priorityqueue = new PriorityQueue<>(imp);
        int[] ans = new int[k];
        if(k == 0){
            return ans;
        }
        for(int i = 0;i < k; i++){
            priorityqueue.offer(arr[i]);
        }
        for(int i = k;i < arr.length; i++){
            int tmp = priorityqueue.peek();
            if(arr[i] < tmp){
                priorityqueue.poll();
                priorityqueue.offer(arr[i]);
            }
        }
        for(int i = 0;i < k; i++){
            ans[i] = priorityqueue.poll();
        }
        return ans;

    }
}

结语:

其实写博客不仅仅是为了教大家,同时这也有利于我巩固自己的知识点,和一个学习的总结,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进,如果大家有所收获的话还请不要吝啬你们的点赞收藏和关注,这可以激励我写出更加优秀的文章。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/379729.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

电商小程序05用户注册

目录 1 搭建页面2 设置默认跳转总结 我们上一篇拆解了登录功能&#xff0c;如果用户没有账号就需要注册了。本篇我们介绍一下注册功能的实现。 1 搭建页面 打开应用&#xff0c;点击左上角的新建页面 输入页面的名称&#xff0c;用户注册 删掉网格布局&#xff0c;添加表单容…

Cisco firepower2100系列使用FDM管理FTD

Cisco firepower2100系列使用FDM管理FTD 啥是FDM Firepower Device Manager 当思科Firepower系列运行的FTD镜像时&#xff0c;可以通过2种方式进行管理 第1种方式&#xff1a; FMC (Firepower management Center) 可以进行统一管理&#xff0c;一台FMC可以管理多个FTD&…

RK3568笔记十二:Zlmedia拉流显示测试

若该文为原创文章&#xff0c;转载请注明原文出处。 Zlmediakit功能很强大&#xff0c;测试一下拉流&#xff0c;在通过解码显示。 一、环境 1、平台&#xff1a;rk3568 2、开发板:ATK-RK3568正点原子板子 3、环境&#xff1a;buildroot 测试的代码在GitHub - airockchip/…

Stable Diffusion教程——使用TensorRT GPU加速提升Stable Diffusion出图速度

概述 Diffusion 模型在生成图像时最大的瓶颈是速度过慢的问题。为了解决这个问题&#xff0c;Stable Diffusion 采用了多种方式来加速图像生成&#xff0c;使得实时图像生成成为可能。最核心的加速是Stable Diffusion 使用了编码器将图像从原始的 3512512 大小转换为更小的 46…

91 xxl-job executor 还存在 并且 job 正在执行, 但是 job 被标记为 “任务结果丢失,标记失败“

前言 最近出现了一个这样的问题 我们生产环境中的一个 xxl-job 任务, 很大一部分执行记录被标记为 "任务结果丢失&#xff0c;标记失败", 几乎是 98% 吧 然后 调试的时候 存在几个令人疑惑的地方 1. 通过 xxl-job 点击查看任务的执行记录的日志, 日志为空, …

异步编程(JS)

前言 想要学习Promise&#xff0c;我们首先要了解异步编程、回调函数、回调地狱三方面知识&#xff1a; 异步编程 异步编程技术使你的程序可以在执行一个可能长期运行的任务的同时继续对其他事件做出反应而不必等待任务完成。 与此同时&#xff0c;你的程序也将在任务完成后显示…

《剑指 Offer》专项突破版 - 面试题 37 : 小行星碰撞(C++ 实现)

题目链接&#xff1a;LCR 037. 行星碰撞 - 力扣&#xff08;LeetCode&#xff09; 题目&#xff1a; 输入一个表示小行星的数组&#xff0c;数组中每个数字的绝对值表示小行星的大小&#xff0c;数字的正负号表示小行星运动的方向&#xff0c;正号表示向右飞行&#xff0c;负…

【开源】SpringBoot框架开发医院门诊预约挂号系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 功能性需求2.1.1 数据中心模块2.1.2 科室医生档案模块2.1.3 预约挂号模块2.1.4 医院时政模块 2.2 可行性分析2.2.1 可靠性2.2.2 易用性2.2.3 维护性 三、数据库设计3.1 用户表3.2 科室档案表3.3 医生档案表3.4 医生放号…

【开源项目阅读】Java爬虫抓取豆瓣图书信息

原项目链接 Java爬虫抓取豆瓣图书信息 本地运行 运行过程 另建项目&#xff0c;把四个源代码文件拷贝到自己的包下面 在代码爆红处按ALTENTER自动导入maven依赖 直接运行Main.main方法&#xff0c;启动项目 运行结果 在本地磁盘上生成三个xml文件 其中的内容即位爬取…

Elasticsearch:通过 ingest pipeline 对大型文档进行分块

在我之前的文章 “Elasticsearch&#xff1a;使用 LangChain 文档拆分器进行文档分块” 中&#xff0c;我详述了如何通过 LangChain 对大的文档进行分块。那个分块的动作是通过 LangChain 在 Python 中进行实现的。对于使用版权的开发者来说&#xff0c;我们实际上是可以通过 i…

【工作学习 day04】 9. uniapp 页面和组件的生命周期

问题描述 uniapp常用的有&#xff1a;页面和组件&#xff0c;并且页面和组件各自有各自的生命周期函数&#xff0c;那么在页面/组件请求数据时&#xff0c;是用created呢&#xff0c;还是用onLoad呢&#xff1f; 先说结论: 组件使用组件的生命周期&#xff0c;页面使用页面的…

【Docker】02 镜像管理

文章目录 一、Images镜像二、管理操作2.1 搜索镜像2.1.1 命令行搜索2.1.2 页面搜索2.1.3 搜索条件 2.2 下载镜像2.3 查看本地镜像2.3.1 docker images2.3.2 --help2.3.3 repository name2.3.4 --filter2.3.5 -q2.3.6 --format 2.4 给镜像打标签2.5 推送镜像2.6 删除镜像2.7 导出…

移动应用开发Android 创建第一个Android项目

文章目录 一、创建第一个Android项目1.1 准备好Android Studio1.2 运行程序1.3 程序结构是什么app下的结构res - 子目录&#xff08;所有图片、布局、字AndroidManifest.xml 有四大组件&#xff0c;程序添加权限声明 Project下的结构 二、开发android时&#xff0c;部分库下载异…

svg基础(六)滤镜-图像,光照效果(漫反射,镜面反射),组合

1 feImage&#xff1a;图像滤镜 feImage 滤镜从外部来源取得图像数据&#xff0c;并提供像素数据作为输出&#xff08;意味着如果外部来源是一个 SVG 图像&#xff0c;这个图像将被栅格化。&#xff09; 1.1 用法: <feImage x"" y"" width"&quo…

基于鲲鹏服务NodeJs安装

准备工作 查看当前环境 uname -a查看鲲鹏云CPU架构 cat /proc/cpuinfo# 查看CPU architecture项&#xff0c;8表示v8&#xff0c;7表示v7下载Node.js NodeJs 选择 Linux Binaries (ARM) ARMv8 wget -c https://nodejs.org/dist/v12.18.3/node-v12.18.3-linux-arm64.tar.xz…

Android用setRectToRect实现Bitmap基于Matrix矩阵scale缩放RectF动画,Kotlin(一)

Android用setRectToRect实现Bitmap基于Matrix矩阵scale缩放RectF动画&#xff0c;Kotlin&#xff08;一&#xff09; 基于Matrix&#xff0c;控制Bitmap的setRectToRect的目标RectF的宽高。从很小的宽高开始&#xff0c;不断迭代增加setRectToRect的目标RectF的宽高&#xff0c…

选调生怎么搜题答案?分享四个可以搜答案的软件 #其他#知识分享#职场发展

大学生活是一个充满挑战和机遇的阶段&#xff0c;在这个阶段&#xff0c;我们需要不断提升自己的学习能力和技巧。而寻找适合自己的学习工具也成为了我们必须面对的任务。幸运的是&#xff0c;现在有许多日常学习工具可以帮助我们更好地组织学习、提高效率。今天&#xff0c;我…

Kubernetes基础(十四)-Cluster Autoscaler

Kubernetes 给出的解决方案就是&#xff1a;自动伸缩&#xff08;auto-scaling&#xff09;&#xff0c;通过自动伸缩组件之间的配合&#xff0c;可以 7*24 小时的监控着k8s集群&#xff0c;动态变化负载&#xff0c;以适应用户需求。 1 自动伸缩组件 1.1 自动伸缩类型 1.1.…

斯巴鲁Subaru EDI需求分析

斯巴鲁Subaru是日本运输集团斯巴鲁公司&#xff08;前身为富士重工&#xff09;的汽车制造部门&#xff0c;以性能而闻名&#xff0c;曾赢得 3 次世界拉力锦标赛和 10 次澳大利亚拉力锦标赛。 斯巴鲁Subaru EDI 需求分析 企业与斯巴鲁Subaru建立EDI连接&#xff0c;首先需要确…

【Linux】进程学习(二):进程状态

目录 1.进程状态1.1 阻塞1.2 挂起 2. 进程状态2.1 运行状态-R进一步理解运行状态 2.2 睡眠状态-S2.3 休眠状态-D2.4 暂停状态-T2.5 僵尸状态-Z僵尸进程的危害 2.6 死亡状态-X2.7 孤儿进程 1.进程状态 1.1 阻塞 阻塞&#xff1a;进程因为等待某种条件就绪&#xff0c;而导致的…