《动手学深度学习(PyTorch版)》笔记7.6

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过,同时对于书上部分章节也做了整合。

Chapter7 Modern Convolutional Neural Networks

7.6 Residual Networks(ResNet)

随着我们设计越来越深的网络,深刻理解“新添加的层如何提升神经网络的性能”变得至关重要。

7.6.1 Function Class

首先,假设有一类特定的神经网络架构 F \mathcal{F} F,它包括学习速率和其他超参数设置。对于所有 f ∈ F f \in \mathcal{F} fF,存在一些参数集(例如权重和偏置),这些参数可以通过在合适的数据集上进行训练而获得。现在假设 f ∗ f^* f是我们真正想要找到的函数,如果是 f ∗ ∈ F f^* \in \mathcal{F} fF,那我们可以轻而易举的训练得到它,但通常我们不会那么幸运。我们将尝试找到一个函数 f F ∗ f^*_\mathcal{F} fF,这是我们在 F \mathcal{F} F中的最佳选择。例如,给定一个具有 X \mathbf{X} X特性和 y \mathbf{y} y标签的数据集,我们可以尝试通过解决以下优化问题来找到它:

f F ∗ : = a r g m i n f L ( X , y , f )  ,  f ∈ F . f^*_\mathcal{F} := \mathop{\mathrm{argmin}}_f L(\mathbf{X}, \mathbf{y}, f) \text{ , } f \in \mathcal{F}. fF:=argminfL(X,y,f) , fF.

为了得到更近似真正 f ∗ f^* f的函数,唯一合理的可能性是设计一个更强大的架构 F ′ \mathcal{F}' F。换句话说,我们预计 f F ′ ∗ f^*_{\mathcal{F}'} fF f F ∗ f^*_{\mathcal{F}} fF“更近似”。然而,如果 F ⊈ F ′ \mathcal{F} \not\subseteq \mathcal{F}' FF,则无法保证新的体系“更近似”。事实上, f F ′ ∗ f^*_{\mathcal{F}'} fF可能更糟:如下图所示,对于非嵌套函数(non-nested function)类,较复杂的函数类并不总是向“真”函数 f ∗ f^* f靠拢(复杂度由 F 1 \mathcal{F}_1 F1 F 6 \mathcal{F}_6 F6递增)。在下图的左边,虽然 F 3 \mathcal{F}_3 F3 F 1 \mathcal{F}_1 F1更接近 f ∗ f^* f,但 F 6 \mathcal{F}_6 F6却离的更远了。相反,对于下图右边的嵌套函数(nested function)类 F 1 ⊆ … ⊆ F 6 \mathcal{F}_1 \subseteq \ldots \subseteq \mathcal{F}_6 F1F6,我们可以避免上述问题。
在这里插入图片描述

因此,只有当较复杂的函数类包含较小的函数类时,我们才能确保提高它们的性能。对于深度神经网络,如果我们能将新添加的层训练成恒等映射(identity function) f ( x ) = x f(\mathbf{x}) = \mathbf{x} f(x)=x,新模型和原模型将同样有效。同时,由于新模型可能得出更优的解来拟合训练数据集,因此添加层似乎更容易降低训练误差。针对这一问题,何恺明等人提出了残差网络(ResNet)。其核心思想是:每个附加层都应该更容易地包含原始函数作为其元素之一。于是,残差块(residual blocks)便诞生了,这个设计对如何建立深层神经网络产生了深远的影响。

7.6.2 Residual Blocks

在这里插入图片描述

如上图所示,假设我们的原始输入为 x x x,而希望学出的理想映射为 f ( x ) f(\mathbf{x}) f(x)。上图左边是一个正常块,虚线框中的部分需要直接拟合出该映射 f ( x ) f(\mathbf{x}) f(x),而右边是ResNet的基础架构–残差块(residual block),虚线框中的部分则需要拟合出残差映射 f ( x ) − x f(\mathbf{x}) - \mathbf{x} f(x)x。残差映射在现实中往往更容易优化。以恒等映射作为理想映射 f ( x ) f(\mathbf{x}) f(x),只需将上图右边虚线框内上方的加权运算(如仿射)的权重和偏置参数设成0,那么 f ( x ) f(\mathbf{x}) f(x)即为恒等映射。实际上,当理想映射 f ( x ) f(\mathbf{x}) f(x)极接近于恒等映射时,残差映射也易于捕捉恒等映射的细微波动。在残差块中,输入可通过跨层数据线路更快地向前传播,且可以避免某些梯度消失或梯度爆炸的问题。

在这里插入图片描述

ResNet沿用了VGG完整的 3 × 3 3\times 3 3×3卷积层设计。残差块里首先有2个有相同输出通道数的 3 × 3 3\times 3 3×3卷积层,每个卷积层后接一个批量规范化层和ReLU激活函数,然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。这样的设计要求2个卷积层的输出与输入形状一样,从而使它们可以相加。如果想改变通道数,就需要引入一个额外的 1 × 1 1\times 1 1×1卷积层来将输入变换成需要的形状后再做相加运算。

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
import matplotlib.pyplot as plt

class Residual(nn.Module):  #@save
    def __init__(self, input_channels,num_channels,use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels,kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)

如下图所示,此代码生成两种类型的网络:当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出;当use_1x1conv=True时,使用 1 × 1 1 \times 1 1×1卷积调整通道和分辨率。

在这里插入图片描述

blk = Residual(3,3)#输入和输出形状一致
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
print(Y.shape)

blk = Residual(3,6, use_1x1conv=True, strides=2)#增加输出通道数的同时,减半输出的高和宽
print(blk(X).shape)

#定义ResNet的模块
#b2-b5各有4个卷积层(不包括恒等映射的1x1卷积层),加上第一个7x7卷积层和最后一个全连接层,共有18层,因此这种模型通常被称为ResNet-18
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                nn.BatchNorm2d(64), nn.ReLU(),
                nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

def resnet_block(input_channels, num_channels, num_residuals,
                first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,
                                use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk

b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

net = nn.Sequential(b1, b2, b3, b4, b5,
                    nn.AdaptiveAvgPool2d((1,1)),
                    nn.Flatten(), nn.Linear(512, 10))

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)
    
lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
plt.show()

训练结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/379522.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

XGB-6: 单调性约束Monotonic Constraints

在建模问题或项目中,通常情况下,可接受模型的函数形式会以某种方式受到约束。这可能是由于业务考虑,或者由于正在研究的科学问题的类型。在某些情况下,如果对真实关系有非常强烈的先验信念,可以使用约束来提高模型的预…

Redis -- 安装客户端redis-plus-plus

目录 访问reids客户端github链接 安装git 如何安装? 下载/编译、安装客户端 安装过程中可能遇到的问题 访问reids客户端github链接 GitHub - sewenew/redis-plus-plus: Redis client written in CRedis client written in C. Contribute to sewenew/redis-p…

Javaweb之SpringBootWeb案例之异常处理功能的详细解析

3. 异常处理 3.1 当前问题 登录功能和登录校验功能我们都实现了,下面我们学习下今天最后一块技术点:异常处理。首先我们先来看一下系统出现异常之后会发生什么现象,再来介绍异常处理的方案。 我们打开浏览器,访问系统中的新增部…

运维的利器--监控--zabbix--第一步:建设zabbix

文章目录 准备工作安装要求安装包获取安装环境 安装工作一、zabbix server服务端安装1.安装mysql2.安装zabbix server及配置环境3.设置并访问zabbix页面5.配置自我监控二、被监控端zabbix agent安装三、在服务端中添加被监控端 思维导图 准备工作 安装要求 为啥要确保正常上网…

自学Python第二十二天- Django框架(六) django的实用插件:cron、APScheduler

django-crontab 和 django-cron 有时候需要django在后台不断的执行一个任务,简单的可以通过中间件来实现,但是中间件是根据请求触发的。如果需要定时执行任务,则需要使用到一些插件。 django-crontab 和 django-cron 是常用的用于处理定时任…

three.js 匀速动画(向量表示速度)

效果&#xff1a; 代码&#xff1a; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs" style"border: 1px solid red"></div>1. 匀速动画(向量表示速度)</div…

【转载】原生社区交友婚恋视频即时通讯双端APP源码 ONE兔2.0版

原生社区交友婚恋视频即时通讯双端APP源码下载ONE兔2.0版 包含后端、H5源码源码&#xff0c;Android源码&#xff0c;IOS源码

LabVIEW热电偶自动校准系统

设计并实现一套基于LabVIEW平台的工业热电偶自动校准系统&#xff0c;通过自动化技术提高校准效率和精度&#xff0c;降低人力成本&#xff0c;确保温度测量的准确性和可靠性。 工业生产过程中&#xff0c;温度的准确测量对产品质量控制至关重要。传统的热电偶校准方式依赖人工…

VS Code中主程序C文件引用了另一个.h头文件,编译时报错找不到函数

目录 一、问题描述二、问题原因三、解决方法四、扩展五、通过CMake进行配置 一、问题描述 VS Code中主程序C文件引用了另一个.h头文件&#xff0c;编译时报错找不到函数 主程序 main.c #include <stdio.h> #include "sumaa.h"int main(int, char**){printf(&q…

阿里云服务器价格表2024最新版CPU内存带宽报价

2024年2月阿里云服务器租用价格表更新&#xff0c;云服务器ECS经济型e实例2核2G、3M固定带宽99元一年、ECS u1实例2核4G、5M固定带宽、80G ESSD Entry盘优惠价格199元一年&#xff0c;轻量应用服务器2核2G3M带宽轻量服务器一年61元、2核4G4M带宽轻量服务器一年165元12个月、2核…

2024-02-08 Unity 编辑器开发之编辑器拓展1 —— 自定义菜单栏与窗口

文章目录 1 特殊文件夹 Editor2 在 Unity 菜单栏中添加自定义页签3 在 Hierarchy 窗口中添加自定义页签4 在 Project 窗口中添加自定义页签5 在菜单栏的 Component 菜单添加脚本6 在 Inspector 为脚本右键添加菜单7 加入快捷键8 小结 1 特殊文件夹 Editor ​ Editor 文件夹是 …

netty-websocket扩展协议及token鉴权补充

文章源码&#xff1a;gitee 源码部分可以看上一篇文章中的源码分析netty-websocket 鉴权token及统一请求和响应头&#xff08;鉴权控制器&#xff09; 最近刚好没事&#xff0c;看到有朋友说自定义协议好搞&#xff0c;我就想了想&#xff0c;发现上面那种方式实现确实麻烦&…

Spring Boot 笔记 003 Bean注册

使用Idea导入第三方jar包 在porn.xml种添加的第三方jar包依赖&#xff0c;并刷新 可以在启动类中尝试调用 以上放到启动类中&#xff0c;不推荐&#xff0c;建议创建一个专门定义的类 package com.geji.config;import cn.itcast.pojo.Country; import cn.itcast.pojo.Province;…

python烟花绘制,春节祝福

春节将至&#xff0c;写一个烟花程序给亲近的人 核心逻辑 烟花类&#xff1a; 定义烟花的颜色&#xff0c;更新烟花的轨迹&#xff0c;爆炸&#xff0c;消失等功能&#xff0c;在烟花爆炸的同时也涉及到粒子的创建 class Firework:def __init__(self):# 随机颜色self.colou…

深度优先搜索(DFS):探索图与树的深度之旅

引言 在图论和计算机科学中&#xff0c;深度优先搜索&#xff08;DFS&#xff09;是一种用于遍历或搜索树或图的算法。与广度优先搜索&#xff08;BFS&#xff09;不同&#xff0c;DFS沿着树的深度遍历树的节点&#xff0c;尽可能深地搜索树的分支。在图中&#xff0c;这种策略…

文心一言 VS 讯飞星火 VS chatgpt (197)-- 算法导论14.3 5题

五、用go语言&#xff0c;对区间树 T 和一个区间 i &#xff0c;请修改有关区间树的过程来支持新的操作 INTERVALSEARCH-EXACTLY(T&#xff0c;i) &#xff0c;它返回一个指向 T 中结点 x 的指针&#xff0c;使得 x.int. lowi.low 且 x.int.high i.high ;或者&#xff0c;如果…

华为第二批难题五:AI技术提升六面体网格生成自动化问题

有CAE开发商问及OCCT几何内核的网格方面的技术问题。其实&#xff0c;OCCT几何内核的现有网格生成能力比较弱。 HybridOctree_Hex的源代码&#xff0c;还没有仔细去学习。 “HybridOctree_Hex”的开发者说&#xff1a;六面体网格主要是用在数值模拟领域的&#xff0c;比如汽车…

LabVIEW网络测控系统

LabVIEW网络测控系统 介绍了基于LabVIEW的网络测控系统的开发与应用&#xff0c;通过网络技术实现了远程的数据采集、监控和控制。系统采用LabVIEW软件与网络通信技术相结合&#xff0c;提高了系统的灵活性和扩展性&#xff0c;适用于各种工业和科研领域的远程测控需求。 随着…

8个简约精美的WordPress外贸网站主题模板

Simplify WordPress外贸网站模板 Simplify WordPress外贸网站模板&#xff0c;简洁实用的外贸公司wordpress外贸建站模板。 查看演示 Invisible Trade WP外贸网站模板 WordPress Invisible Trade外贸网站模板&#xff0c;做进出口贸易公司官网的wordpress网站模板。 查看演…

微信小程序(基本操作)

概念&#xff1a; 小程序&#xff1a;就是小程序&#xff0c;mini program。现在市面上有微信小程序&#xff0c;百度智能小程序等等。 微信小程序&#xff0c;简称小程序&#xff0c;英文名Mini Program&#xff0c;是一种不需要下载安装即可使用的应用&#xff0c;它实现了…