文心一言 VS 讯飞星火 VS chatgpt (197)-- 算法导论14.3 5题

五、用go语言,对区间树 T 和一个区间 i ,请修改有关区间树的过程来支持新的操作 INTERVALSEARCH-EXACTLY(T,i) ,它返回一个指向 T 中结点 x 的指针,使得 x.int. low==i.low 且 x.int.high == i.high ;或者,如果不包含这样的区间时返回 T.nil 。所有的操作(包括INTERVAL-SEARCH-EXACTLY)对于包含 n 个结点的区间树的运行时间都应为 O(lgn)。

文心一言:

为了实现INTERVAL-SEARCH-EXACTLY操作,我们可以在区间树中添加一个辅助函数来递归地搜索与给定区间相匹配的节点。以下是一个可能的实现:

type IntervalTreeNode struct {  
    Interval   Interval  
    Left, Right *IntervalTreeNode  
    Ptr         *IntervalTreeNode // 指向与当前节点区间完全匹配的子节点  
}  
  
func (t *IntervalTreeNode) SearchExactly(i Interval) *IntervalTreeNode {  
    if t == nil || i.Start < t.Interval.Start || i.End > t.Interval.End {  
        return t  
    }  
    if t.Ptr != nil && t.Ptr.Interval == i {  
        return t.Ptr  
    }  
    if i.Start <= t.Interval.Start {  
        left := t.Left.SearchExactly(i)  
        if left != nil {  
            t.Ptr = left  
            return left  
        }  
    }  
    if i.End >= t.Interval.End {  
        right := t.Right.SearchExactly(i)  
        if right != nil {  
            t.Ptr = right  
            return right  
        }  
    }  
    return nil  
}

在这个实现中,我们添加了一个Ptr字段来存储指向与当前节点区间完全匹配的子节点的指针。在搜索过程中,我们首先检查当前节点是否与给定区间匹配,如果不匹配,则返回nil。如果当前节点与给定区间部分匹配,我们分别在左子树和右子树中递归地搜索完全匹配的节点,并更新Ptr字段来存储找到的节点指针。最后,返回找到的节点指针或nil。

现在,我们可以使用以下代码来调用INTERVAL-SEARCH-EXACTLY操作:

func INTERVAL-SEARCH-EXACTLY(T *IntervalTreeNode, i Interval) *IntervalTreeNode {  
    result := T.SearchExactly(i)  
    if result != nil {  
        return result  
    } else {  
        return T.nil // 返回空指针或表示无效的节点指针  
    }  
}

请注意,这个实现假设了T.nil是一个预定义的空指针或无效节点指针,用于表示没有找到与给定区间完全匹配的节点。你可以根据你的具体需求来定义T.nil的值。

在这里插入图片描述

在这里插入图片描述

讯飞星火:

在Go语言中,我们可以使用二分搜索来解决这个问题。我们首先找到区间树的根节点,然后比较根节点的区间和给定的区间。如果根节点的区间等于给定的区间,我们就返回根节点。万分抱歉,我可能还需要反应一会,给我点时间,谢谢。

在这里插入图片描述

360智脑:

以下是 Go 语言实现的对区间树 T 和一个区间 i 进行 INTERVAL-SEARCH-EXACTLY 操作的算法:

type IntervalTreeNode struct {
    LeftChild  *IntervalTreeNode 
    RightChild *IntervalTreeNode 
    Max        int 
    // 其他属性 
}
func IntervalSearchExactly(T *IntervalTreeNode, i int) *IntervalTreeNode {
    // 如果树为空,返回 nil 
    if T == nil {
        return nil 
    }
    // 如果当前节点的低端点不等于查询区间的低端点,返回 nil 
    if T.Max != i {
        return nil 
    }
    // 如果当前节点的高端点不等于查询区间的高端点,返回 nil 
    if T.Max != i {
        return nil 
    }
    // 如果当前节点的区间与查询区间完全相等,返回当前节点 
    return T 
}

注意,以上代码仅为示例,具体实现可能需要根据实际需求进行调整。

在这里插入图片描述

智谱清言,代码正常运行:

为了支持新的操作 INTERVALSEARCH-EXACTLY(T, i),我们需要对区间树(Interval Tree)的结构和操作进行扩展。在Go语言中实现这一操作,我们需要遵循以下步骤:

1.定义区间树的数据结构,包括区间的定义(low 和 high)以及树节点(可能包含指向子节点的指针和区间信息)。

2.实现区间树的插入、删除和查询操作,确保所有操作的运行时间为 O(lgn)。

3.实现 INTERVALSEARCH-EXACTLY(T, i) 操作,它将搜索具有精确边界匹配的区间。

以下是一个简化的Go语言实现,它展示了如何定义区间树的数据结构,以及如何实现 INTERVALSEARCH-EXACTLY 操作:

package main
import (
	"fmt"
)
// Interval 定义了一个区间
type Interval struct {
	Low   int
	High  int
	Left  *Interval
	Right *Interval
}
// IntervalTreeNode 是区间树的节点
type IntervalTreeNode struct {
	Interval
	Parent *IntervalTreeNode
	Left   *IntervalTreeNode
	Right  *IntervalTreeNode
}
// NewIntervalTreeNode 创建一个新的区间树节点
func NewIntervalTreeNode(interval Interval) *IntervalTreeNode {
	return &IntervalTreeNode{
		Interval: interval,
	}
}
// IntervalTree 是区间树的封装
type IntervalTree struct {
	Root *IntervalTreeNode
}
// Insert 向区间树中插入一个新的区间
func (t *IntervalTree) Insert(interval Interval) {
	// 插入逻辑,确保树操作时间复杂度为 O(lgn)
	// ...
}
// SearchExactly 搜索具有精确边界匹配的区间
func (t *IntervalTree) SearchExactly(i Interval) *IntervalTreeNode {
	return searchExactly(t.Root, i)
}
// searchExactly 在区间树中递归搜索精确匹配的区间
func searchExactly(node *IntervalTreeNode, i Interval) *IntervalTreeNode {
	if node == nil {
		return nil
	}
	if i.Low == node.Interval.Low && i.High == node.Interval.High {
		return node
	}
	// 根据区间的边界值选择左子树或右子树
	if i.Low < node.Interval.Low {
		return searchExactly(node.Left, i)
	} else if i.Low > node.Interval.Low {
		return searchExactly(node.Right, i)
	}
	// 如果 low 相同,需要进一步检查 high
	if i.High < node.Interval.High {
		return searchExactly(node.Left, i)
	} else if i.High > node.Interval.High {
		return searchExactly(node.Right, i)
	}
	// 如果 high 也相同,则找到了匹配的区间
	return node
}
func main() {
	// 创建区间树
	tree := &IntervalTree{}
	// 插入区间
	// tree.Insert(Interval{Low: 1, High: 5})
	// tree.Insert(Interval{Low: 2, High: 7})
	// tree.Insert(Interval{Low: 3, High: 9})
	// 搜索精确匹配的区间
	i := Interval{Low: 4, High: 6}
	node := tree.SearchExactly(i)
	if node != nil {
		fmt.Printf("Found interval: %#v\n", node.Interval)
	} else {
		fmt.Println("No interval found")
	}
}

请注意,上述代码中省略了区间树的插入(Insert 方法)实现,因为这通常涉及到平衡二叉搜索树(如AVL树或红黑树)的复杂逻辑,以保持树的平衡并确保所有操作的运行时间为 O(lgn)。完整的实现还需要考虑如何维护区间树的结构,以便在每次插入或删除操作后,树都能保持平衡。
`
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

通义千问:

在Go语言中,为了支持INTERVALSEARCH-EXACTLY操作,可以在现有区间树的基础上进行如下修改。这里假设我们已经有了一个实现了基本区间搜索功能的区间树结构。首先,我们需要对区间树节点进行扩展,增加一个标志位表示该节点代表的区间是否精确匹配目标区间。接下来,提供一个递归的exactMatchSearch函数,该函数在O(log n)时间内找到与给定区间完全相同的区间节点。

type Interval struct {
    Low, High int // 区间端点
}

type Node struct {
    Interval Interval
    IsExactMatch bool // 新增标志位,表示该节点区间是否精确匹配目标区间
    Left, Right *Node
}

// INTERVALSEARCH-EXACTLY 函数
func IntervalSearchExactly(root *Node, i Interval) *Node {
    if root == nil {
        return nil
    }

    if root.Interval.Low == i.Low && root.Interval.High == i.High {
        root.IsExactMatch = true // 标记为精确匹配
        return root
    }

    leftResult := IntervalSearchExactly(root.Left, i)
    if leftResult != nil {
        return leftResult
    }

    rightResult := IntervalSearchExactly(root.Right, i)
    if rightResult != nil {
        return rightResult
    }

    return nil // 未找到完全匹配的区间
}

// 初始化函数,用于创建和插入新区间时清零IsExactMatch标志
func insertInterval(root **Node, interval Interval) {
    // 插入新区间的逻辑...
    (*root).IsExactMatch = false // 清零精确匹配标志
}

// (可选)在删除节点时,也需要重置其祖先节点的IsExactMatch标志
func deleteNode(root **Node, i Interval) {
    // 删除节点的逻辑...
    resetAncestorExactMatch(root, i)
}

// 重置祖先节点的IsExactMatch标志
func resetAncestorExactMatch(root **Node, deletedInterval Interval) {
    current := *root
    for current != nil {
        if current.Interval.Low == deletedInterval.Low && current.Interval.High == deletedInterval.High {
            current.IsExactMatch = false
            break
        }
        if deletedInterval.Low <= current.Interval.Low {
            current = current.Left
        } else {
            current = current.Right
        }
    }
}

注意:上述实现中,IsExactMatch标志仅用于加速后续的精确匹配查询,插入和删除操作仍需维持原有的O(log n)时间复杂度。在实际使用时,你可能还需要根据你的区间树实现细节进行适当的调整。同时,由于区间树本身并不保证存在唯一区间,所以即使找到了一个精确匹配的区间,也不能排除树中还存在其他同样大小的区间。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

天工:

在Go语言中,区间树通常用数组来表示,其中每个元素对应一个节点。我们可以使用两种类型的查询:

  1. 查询与给定区间i完全相同的节点。这可以通过从根开始,递归地检查子节点的区间是否与i完全相同。如果相同,我们就递归地检查那个子节点。

  2. 查询包含给定区间的节点。这可以通过从根开始,递归地检查子节点的区间是否包含给定的区间。如果包含,我们就递归地检查那个子节点。

这两种查询的时间复杂度都是O(logn)。所以,如果我们做一次查询,总的时间复杂度就是O(logn)。

以下是Go语言实现的示例代码:

type IntervalTree struct {
    root   *IntervalTreeNode
    ranges []Interval
}

type IntervalTreeNode struct {
    low, high int
    left, right *IntervalTreeNode
}

func (it *IntervalTree) Insert(interval Interval) {
    // ... 插入操作 ...
}

func (it *IntervalTree) ExactSearch(low, high int) *IntervalTreeNode {
    var result *IntervalTreeNode
    it.exactSearch(it.root, low, high, &result)
    return result
}

func (it *IntervalTree) exactSearch(node *IntervalTreeNode, low, high, result *int) {
    if low == node.low && node.high == high {
        *result = node.index
    }

    if low <= node.low {
        it.exactSearch(node.left, low, high, result)
    }

    if node.high <= high {
        it.exactSearch(node.right, low, high, result)
    }
}

在上述代码中,ExactSearch函数可以用于查询与给定区间i完全相同的节点。Insert函数用于插入新的区间。注意,这只是一个简化的示例,实际应用中可能需要更复杂的逻辑来处理插入和查询操作。

在这里插入图片描述

在这里插入图片描述

灵小智:

对于给定的区间树 T 和一个区间 i,我们可以通过修改区间树的查询过程来支持新的操作 INTERVAL-SEARCH-EXACTLY(T, i)。以下是一种使用 Go 语言实现的示例:
type Interval struct {
    low  int
    high int
}

type Node struct {
    interval Interval
    max      int
    left     *Node
    right    *Node
    parent   *Node
}

type IntervalTree struct {
    root *Node
    nil  *Node
}

// 创建一个新的区间树
func NewIntervalTree() *IntervalTree {
    nilNode := &Node{interval: Interval{}, max: -1}
    return &IntervalTree{root: nilNode, nil: nilNode}
}

// 向区间树中插入一个区间
func (tree *IntervalTree) Insert(interval Interval) {
    newNode := &Node{interval: interval, max: interval.high, left: tree.nil, right: tree.nil, parent: tree.nil}
    current := tree.root
    var prev *Node

    // 找到插入的位置
    for current != tree.nil && current != nil {
        prev = current
        if interval.low < current.interval.low {
            current = current.left
        } else {
            current = current.right
        }
    }

    // 插入新节点
    newNode.parent = prev
    if prev == tree.nil {
        tree.root = newNode
    } else if interval.low < prev.interval.low {
        prev.left = newNode
    } else {
        prev.right = newNode
    }

    // 更新父节点的最大值
    tree.updateMax(newNode)
}

// 在区间树中搜索与给定区间完全匹配的节点
func (tree *IntervalTree) IntervalSearchExactly(interval Interval) *Node {
    return tree.intervalSearchExactlyHelper(tree.root, interval)
}

// 递归地在区间树中搜索与给定区间完全匹配的节点
func (tree *IntervalTree) intervalSearchExactlyHelper(node *Node, interval Interval) *Node {
    if node == tree.nil || (node.interval.low == interval.low && node.interval.high == interval.high) {
        return node
    }

    if node.left != tree.nil && node.left.max >= interval.low {
        return tree.intervalSearchExactlyHelper(node.left, interval)
    } else {
        return tree.intervalSearchExactlyHelper(node.right, interval)
    }
}

// 更新节点及其祖先节点的最大值
func (tree *IntervalTree) updateMax(node *Node) {
    for node != tree.nil && node != nil {
        if node.max < node.interval.high {
            node.max = node.interval.high
        }
        node = node.parent
    }
}

可以使用以下代码来测试上述区间树的功能:

func main() {
    t := NewIntervalTree()
    
    t.Insert(Interval{low: 10, high: 20})
    t.Insert(Interval{low: 5, high: 15})
    t.Insert(Interval{low: 30, high: 40})
    t.Insert(Interval{low: 25, high: 35})
    
    i := Interval{low: 10, high: 20}
    result := t.IntervalSearchExactly(i)
    
    if result != t.nil {
        fmt.Println("Found matching interval:", result.interval)
    } else {
        fmt.Println("No matching interval found")
    }
}

以上代码演示了如何创建一个区间树,并在其中插入几个区间。然后,我们使用 IntervalSearchExactly 方法搜索与给定区间完全匹配的节点,并打印结果。请注意,上述代码只是示例,你可以根据自己的需求进行修改和扩展。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

chatgpt,代码不能运行:

在Go语言中,可以使用自定义的数据结构来表示区间树,并实现INTERVALSEARCH-EXACTLY操作。下面是一个示例代码:

package main

import (
	"fmt"
)

type Interval struct {
	low  int
	high int
}

type Node struct {
	interval       Interval
	maxHigh        int
	left, right, p *Node
}

type IntervalTree struct {
	root *Node
	nil  *Node // 哨兵节点,表示NIL叶子节点
}

// 创建新的节点
func newNode(interval Interval) *Node {
	return &Node{
		interval: interval,
		maxHigh:  interval.high,
		left:     nil,
		right:    nil,
		p:        nil,
	}
}

// 插入节点到区间树中(基于红黑树)
func (it *IntervalTree) insert(node *Node) {
	y := it.nil // 父节点指针初始化为哨兵节点NIL

	x := it.root
	for x != it.nil { // 查找插入位置,并更新maxHigh值
		x.maxHigh = max(x.maxHigh, node.interval.high)
		y = x

		if node.interval.low < x.interval.low || (node.interval.low == x.interval.low && node.interval.high <= x.interval.high) {
			x = x.left // 在左子树中查找插入位置
		} else {
			x = x.right // 在右子树中查找插入位置
		}
	}

	node.p = y // 设置父节点指针

	if y == it.nil { // 树为空,设置根节点为新插入的节点
		it.root = node
	} else if node.interval.low < y.interval.low || (node.interval.low == y.interval.low && node.interval.high <= y.interval.high) {
		y.left = node // 插入为左子节点
	} else {
		y.right = node // 插入为右子节点
	}

	node.left = it.nil  // 设置左子节点和右子节点为哨兵节点NIL
	node.right = it.nil

	node.maxHigh = max(node.maxHigh, node.interval.high)

	it.insertFixup(node) // 调整红黑树平衡性
}

// 调整红黑树平衡性(插入时)
func (it *IntervalTree) insertFixup(z *Node) {
	for z.p != it.nil && z.p.p != it.nil && z.p.color == "red" {
		if z.p == z.p.p.left { // 父节点是祖父节点的左孩子
			y := z.p.p.right

			if y != it.nil && y.color == "red" { // 情况1:叔节点为红色
				z.p.color = "black"
				y.color = "black"
				z.p.p.color = "red"
				z = z.p.p
			} else { // 叔节点为黑色或NIL,情况2或3
				if z == z.p.right { // 情况2:z是其父亲的右孩子
					z = z.p
					it.leftRotate(z)
				}
				
				// 情况3:z是其父亲的左孩子
				z.p.color = "black"
				z.p.p.color = "red"
				it.rightRotate(z.p.p)
			}
		} else { // 父节点是祖父节点的右孩子,与左孩子对称
			y := z.p.p.left

			if y != it.nil && y.color == "red" {
				z.p.color = "black"
				y.color = "black"
				z.p.p.color = "red"
				z = z.p.p
			} else {
				if z == z.p.left {
					z = z.p
					it.rightRotate(z)
				}

				z.p.color = "black"
				z.p.p.color = "red"
				it.leftRotate(z.p.p)
			}
		}
	}

	it.root.color = "black" // 根节点必须为黑色
}

// 左旋操作
func (it *IntervalTree) leftRotate(x *Node) {
	y := x.right
	x.right = y.left

	if y.left != it.nil {
		y.left.p = x
	}

	y.p = x.p

	if x == it.root { // 更新根节点指针
		it.root = y
	} else if x == x.p.left { // 更新父节点的左子树或右子树指针
		x.p.left = y
	} else {
		x. p.right= y
    }

    y.left=x 
    x. p=y 

    //更新maxHigh值  
     x.maxHigh=max(x.interval.high,max(x.left.maxHigh,x.right.maxHigh))  
     y.maxHigh=max(y.interval.high,max(y. left .max High,y.r ight . max High))
}

// 右旋操作  
func (it *IntervalTree) rightRotate(y *Node) {  
     x := y.left  
     y.left = x.right  
 
     if x.right != it.nil {  
         x. right.p = y  
     }  
 
     x.p = y.p  
 
     if y == it.root { // 更新根节点指针
         it.root = x  
     } else if y == y.p.left { // 更新父节点的左子树或右子树指针
         y.p.left = x  
     } else {  
         y. p. r ight=x 
    }
    
    x. right=y 
    y .p=x 

   //更新maxHigh值   
    y.maxHigh=max(y.interval.high,max(y.left.maxHigh,y.right.maxHigh))   
    x.maxHigh=max(x.interval.high,max(x.left.maxHigh,x.right.maxHigh))   
}  

// INTERVAL-SEARCH-EXACTLY操作:查找T中与给定区间i完全相同的区间
func (it *IntervalTree) intervalSearchExactly(node *Node, i Interval) *Node {
	if node == it.nil || (node.interval.low == i.low && node.interval.high == i.high) {
		return node
	}

	if i.low < node.interval.low || (i.low == node.interval.low && i.high <= node.interval.high) {
		return it.intervalSearchExactly(node.left, i)
	}

	return it.intervalSearchExactly(node.right, i)
}

// 辅助函数:返回两个整数中的较大值
func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

// 测试代码
func main() {
	it := &IntervalTree{
		nil:  &Node{color: "black"},
		root: nil,
	}

	intervals := []Interval{
		{low: 2, high: 8},
		{low: 5, high: 10},
		{low: 12, high: 15},
	}

	for _, interval := range intervals {
		node := newNode(interval)
		it.insert(node)
    }
    
    // 测试 INTERVAL-SEARCH-EXACTLY 操作
	exactInterval := Interval{low: 5, high: 10}
	foundNode := it.intervalSearchExactly(it.root, exactInterval)

	if foundNode == it.nil {
		fmt.Println("No exact interval found.")
	} else {
		fmt.Printf("Exact interval found: [%d, %d]\n", foundNode.interval.low, foundNode.interval.high)
    }
}

上述代码演示了如何使用红黑树实现区间树,并在其中添加了INTERVAL-SEARCH-EXACTLY操作,它可以在O(log n)的时间内返回与给定区间完全相同的节点。通过对树结构的插入和旋转操作来维持平衡性,从而保证了O(log n)的时间复杂度。

请注意,为简化示例,我省略了节点颜色属性、调整平衡性的过程等一些边界情况的处理。你可以根据需要进行适当修改和扩展以满足更复杂的需求。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

F

在这里插入图片描述

在这里插入图片描述

kimi,代码不能运行:

在 Go 语言中,为了支持 INTERVALSEARCH-EXACTLY 操作,我们需要对区间树的搜索过程进行修改。这个操作的目标是找到与给定区间 i 完全匹配的节点。如果不存在这样的节点,我们返回 T.nil。以下是一个可能的实现:

package main

import (
	"fmt"
)

type IntervalNode struct {
    intLow, intHigh int // 区间的低端点和高端点
    left, right       *IntervalNode
}

var TNil *IntervalNode // 哨兵节点,表示不存在的节点

func INTERVALSEARCH_EXACTLY(root *IntervalNode, i int) *IntervalNode {
    if root == TNil {
        return TNil
    }

    // 如果当前节点的区间与给定区间 i 完全匹配,返回当前节点
    if root.intLow == i && root.intHigh == i {
        return root
    }

    // 如果当前节点的低端点大于 i,那么匹配的区间只能在左子树中
    if root.intLow > i {
        return INTERVALSEARCH_EXACTLY(root.left, i)
    }

    // 如果当前节点的高端点小于 i,那么匹配的区间只能在右子树中
    if root.intHigh < i {
        return INTERVALSEARCH_EXACTLY(root.right, i)
    }

    // 如果当前节点的区间包含 i,那么我们需要在左右子树中继续搜索
    leftResult := INTERVALSEARCH_EXACTLY(root.left, i)
    rightResult := INTERVALSEARCH_EXACTLY(root.right, i)

    // 如果左右子树中都没有找到匹配的区间,返回 TNil
    if leftResult == TNil && rightResult == TNil {
        return TNil
    }

    // 如果左右子树中只有一个结果,返回那个结果
    if leftResult == TNil {
        return rightResult
    }
    if rightResult == TNil {
        return leftResult
    }

    // 如果左右子树都有结果,这是不可能的,因为区间树是二分的
    // 这里可以添加逻辑来处理这种情况,例如返回左子树的结果或者右子树的结果
    // 这里我们假设左子树的结果更优,返回左子树的结果
    return leftResult
}

func main() {
    // 初始化 TNil 哨兵节点
    TNil = &IntervalNode{}

    // 构建区间树 T
    // ...

    // 给定区间 i
    i := 5

    // 执行 INTERVALSEARCH-EXACTLY 操作
    result := INTERVALSEARCH_EXACTLY(T.root, i)

    if result != TNil {
        fmt.Printf("Found interval: [%d, %d]\n", result.intLow, result.intHigh)
    } else {
        fmt.Println("No matching interval found.")
    }
}

在这个实现中,我们首先定义了一个 IntervalNode 结构体来表示区间树的节点,以及一个全局的 TNil 哨兵节点。INTERVALSEARCH_EXACTLY 函数递归地搜索区间树,寻找与给定区间 i 完全匹配的节点。如果找到了这样的节点,它将返回该节点;如果没有找到,它将返回 TNil

请注意,这个实现假设区间树是平衡的,并且每个节点的低端点和高端点是唯一的。在实际的 Go 代码中,你可能需要根据具体的区间树实现来调整这个代码。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

混元,代码正常运行:

为了支持新的操作 INTERVALSEARCH-EXACTLY(T, i),我们需要修改区间树的数据结构和相关操作。以下是修改后的 Go 语言实现:

package main

import "fmt"

type Interval struct {
	start int
	end   int
}

type Node struct {
	interval Interval
	left     *Node
	right    *Node
}

func newNode(interval Interval) *Node {
	return &Node{
		interval: interval,
	}
}

func insert(root *Node, interval Interval) *Node {
	if root == nil {
		return newNode(interval)
	}

	if interval.start< root.interval.start {
		root.left = insert(root.left, interval)
	} else {
		root.right = insert(root.right, interval)
	}

	return root
}

func intervalSearchExactly(root *Node, i Interval) *Node {
	current := root

	for current != nil {
		if current.interval.start == i.start && current.interval.end == i.end {
			return current
		}

		if i.start< current.interval.start {
			current = current.left
		} else {
			current = current.right
		}
	}

	return nil
}

func main() {
	root := newNode(Interval{start: 1, end: 3})
	root.left = newNode(Interval{start: 2, end: 4})
	root.right = newNode(Interval{start: 4, end: 6})

	i := Interval{start: 2, end: 4}
	result := intervalSearchExactly(root, i)

	if result != nil {
		fmt.Printf("Found interval exactly: %d-%d\n", result.interval.start, result.interval.end)
	} else {
		fmt.Println("No interval found exactly")
	}
}

这个代码实现了一个简单的区间树,其中每个区间都是开区间。我们添加了一个新的函数 intervalSearchExactly,它在给定的区间树中查找与给定区间 i 完全匹配的区间,并返回一个指向该区间的指针。如果没有找到匹配的区间,它将返回 nil。

请注意,这个实现假设区间树中的区间是唯一的。如果区间树中可能存在重复的区间,你需要根据具体需求进行相应的修改。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/379483.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

华为第二批难题五:AI技术提升六面体网格生成自动化问题

有CAE开发商问及OCCT几何内核的网格方面的技术问题。其实&#xff0c;OCCT几何内核的现有网格生成能力比较弱。 HybridOctree_Hex的源代码&#xff0c;还没有仔细去学习。 “HybridOctree_Hex”的开发者说&#xff1a;六面体网格主要是用在数值模拟领域的&#xff0c;比如汽车…

LabVIEW网络测控系统

LabVIEW网络测控系统 介绍了基于LabVIEW的网络测控系统的开发与应用&#xff0c;通过网络技术实现了远程的数据采集、监控和控制。系统采用LabVIEW软件与网络通信技术相结合&#xff0c;提高了系统的灵活性和扩展性&#xff0c;适用于各种工业和科研领域的远程测控需求。 随着…

8个简约精美的WordPress外贸网站主题模板

Simplify WordPress外贸网站模板 Simplify WordPress外贸网站模板&#xff0c;简洁实用的外贸公司wordpress外贸建站模板。 查看演示 Invisible Trade WP外贸网站模板 WordPress Invisible Trade外贸网站模板&#xff0c;做进出口贸易公司官网的wordpress网站模板。 查看演…

微信小程序(基本操作)

概念&#xff1a; 小程序&#xff1a;就是小程序&#xff0c;mini program。现在市面上有微信小程序&#xff0c;百度智能小程序等等。 微信小程序&#xff0c;简称小程序&#xff0c;英文名Mini Program&#xff0c;是一种不需要下载安装即可使用的应用&#xff0c;它实现了…

Python进程之串行与并行

串行和并行 串行指的是任务的执行方式。串行在执行多个任务时&#xff0c;各个任务按顺序执行&#xff0c;完成一个之后才能进行下一个。&#xff08;早期单核CPU的情况下&#xff09; 并行指的是多个任务在同一时刻可以同时执行&#xff08;前提是多核CPU&#xff09;&#…

【蓝桥杯单片机记录】IO基础与LED控制

目录 一、IO基础 1.1 IAP15F2K61S2芯片原理图 1.2不同工作模式 二、新建工程的一些补充 2.1 keil中没有IAP15F2K61S2的头文件 解决&#xff1a;在isp软件中找到如下​编辑 2.2keil中的芯片选择 2.3推荐字体 三、sbit关键字 四、LED控制 4.1原理图 4.2不能直接通过IO…

电脑多出一个虚拟驱动器又无法删除怎么办

下载解压UltraISO https://wwb.lanzoum.com/i8vY71nqnp4d 右键UltraISO.exe以管理员身份运行 点击选项 点击配置 91fddbd892a0.png) 点击虚拟光驱&#xff0c;把设备数量改成无&#xff0c;点击确定即可

Spring是怎么解决循环依赖的

首先先解释一下什么叫循环依赖 循环依赖:循环依赖其实就是循环引用,也就是两个或两个以上的bean互相持有对方,最终形成闭环.比如A依赖于B,B依赖于A 循环依赖在spring中是允许存在的,spring框架依据三级缓存已经解决了大部分的循环依赖 一级缓存:单例池,缓存已经经历了完整的…

门诊单据打印用什么软件,线下处方单生成系统教程

门诊单据打印用什么软件&#xff0c;线下处方单生成系统教程 一、前言 以下软件教程以 佳易王诊所电子处方管理系统软件V17.3为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 如上图&#xff0c;电子处方或病历记录开单生成保存后&#xff0c;可…

3分钟部署完成Docker Registry及可视化管理工具Docker-UI

安装docker-registry 由于镜像文件会非常占用空间&#xff0c;因此需要选择一个磁盘充裕的位置来存放镜像数据。 这里设置为&#xff1a;-v /data/registry:/var/lib/registry&#xff0c;其中/data/registry是宿主机存放数据的位置。 docker run -d -p 5000:5000 --restart…

95.网游逆向分析与插件开发-游戏窗口化助手-窗口化助手显示与大小调整

内容参考于&#xff1a;易道云信息技术研究院VIP课 上一个内容&#xff1a;地图数据获取的逆向分析与C代码还原 码云地址&#xff08;游戏窗口化助手 分支&#xff09;&#xff1a;https://gitee.com/dye_your_fingers/sro_-ex.git 码云版本号&#xff1a;e85c0fc8b85895c8c…

深度分析一款新型Linux勒索病毒

前言 DarkRadiation勒索病毒是一款全新的Linux平台下的勒索病毒&#xff0c;2021年5月29日首次在某平台上发布了此勒索病毒的相关的信息&#xff0c;6月中旬趋势科技针对这个新型的勒索病毒进行了相关的分析和报道。 DarkRadiation勒索病毒采用Bash脚本语言编写实现&#xff0…

运维高级篇-分库分表(拆分策略详解)

分库分表 介绍 问题分析 随着互联网及移动互联网的发展&#xff0c;应用系统的数据量也是成指数式增长&#xff0c;若采用单数据库进行数据存 储&#xff0c;存在以下性能瓶颈&#xff1a; IO瓶颈&#xff1a;热点数据太多&#xff0c;数据库缓存不足&#xff0c;产生大量磁盘…

Leetcode 30天高效刷数据结构和算法 Day1 两数之和 —— 无序数组

两数之和 —— 无序数组 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是&#xff0c;数组中同一个元素在答案里不能重复出现…

SCI 1区论文:Segment anything in medical images(MedSAM)[文献阅读]

基本信息 标题&#xff1a;Segment anything in medical images中文标题&#xff1a;分割一切医学图像发表年份: 2024年1月期刊/会议: Nature Communications分区&#xff1a; SCI 1区IF&#xff1a;16.6作者: Jun Ma; Bo Wang(一作&#xff1b;通讯)单位&#xff1a;加拿大多…

「Mybatis实战五」:Mybatis核心文件详解 - MyBatis常用配置environments、properties

一、MyBatis核心配置文件层级关系 ​ 本文代码在 Mybatis初体验&#xff1a;一小时从入门到运行你的第一个应用 所构建的基础代码结构之上&#xff0c;进行修改。 MyBatis 的配置文件包含了会深深影响 MyBatis 行为的设置和属性信息。 配置文档的顶层结构如下&#xff1a; 二…

【C语言初阶-结构体】关于结构体的声明定义、结构体传参详解

目录 1. 结构体的声明 1.1 结构的基础知识 1.2 结构的声明 1.3 结构成员的类型 1.4 结构体变量的定义和初始化 2. 结构体成员的访问 2.1(.)操作符 2.2&#xff08;->&#xff09;操作符 3.结构体传参 1. 结构体的声明 1.1 结构的基础知识 结构体是一些值的集合&…

K8S之Pod常见的状态和重启策略

Pod常见的状态和重启策略 常见的Pod状态PendingPodScheduledUnschedulablePodInitializingImagePullBackOffInitializedRunningErrorCrashLoopBackOffTerminatingSucceededFailedEvictedUnknown Pod的重启策略使用Always重启策略使用Never重启策略使用OnFailure重启策略(常用) …

【经验】SPICE仿真 - Bob Pease会说No吗?

每一个读过我博客的人都知道&#xff0c;我使用SPICE模型仿真电路。你可能听说过Bob Pease&#xff0c;在SPICE领域相当执有己见&#xff0c;他曾经说过&#xff1a;“SPCIE模型削弱了你对所发生事物的洞察能力。SPICE模型实际上降低了你对电路如何工作的理解能力”。今天&…

【原创 附源码】Flutter海外登录--Google登录最详细流程

最近接触了几个海外登录的平台&#xff0c;踩了很多坑&#xff0c;也总结了很多东西&#xff0c;决定记录下来给路过的兄弟坐个参考&#xff0c;也留着以后留着回顾。更新时间为2024年2月8日&#xff0c;后续集成方式可能会有变动&#xff0c;所以目前的集成流程仅供参考&#…