PyTorch 2.2大更新!集成FlashAttention-2,性能提升2倍

【新智元导读】新的一年,PyTorch也迎来了重大更新,PyTorch 2.2集成了FlashAttention-2和AOTInductor等新特性,计算性能翻倍。

新的一年,PyTorch也迎来了重大更新!

继去年十月份的PyTorch大会发布了2.1版本之后,全世界各地的521位开发者贡献了3628个提交,由此形成了最新的PyTorch 2.2版本。

新的版本集成了FlashAttention-2,使得scaled_dot_product_attention (SDPA)相较于之前的版本有了约2倍的性能提升。

PyTorch 2.2还引入了一个新的TorchInductor提前扩展,称为 AOTInductor,旨在为非python服务器端编译和部署PyTorch程序。

PyTorch中的torch.distributed支持了一个叫做device_mesh的新抽象,用于初始化和表示ProcessGroups。

另外,PyTorch 2.2提供了一个标准化的、可配置的日志记录机制,——TORCH_LOGS。

PyTorch 2.2还对torch.compile做了许多改进,包括改进了对编译优化器的支持,以及TorchInductor融合和布局优化。

最后值得注意的是,PyTorch将放弃对macOS x86的支持,PyTorch 2.2.x是支持macOS x64的最后一个版本。

PyTorch 2.2新特性

首先请注意,如果从源代码构建PyTorch 2.2,需要GCC 9.4或更高版本,PyTorch 代码库已从C++ 14迁移到C++ 17。

FlashAttention-2

FlashAttention-2通过优化GPU上不同线程块和warps之间的工作分区,来解决占用率低或不必要的共享内存读写。

FlashAttention-2调整了算法以减少非matmul的计算量,同时提升了Attention计算的并行性(即使是单个头,也可以跨不同的线程块,以增加占用率),在每个线程块中,优化warps之间的工作分配,以减少通过共享内存的通信。

PyTorch 2.2将FlashAttention内核更新到了v2版本,不过需要注意的是,之前的Flash Attention内核具有Windows实现,Windows用户可以强制使用sdp_kernel,仅启用Flash Attention的上下文管理器。

而在2.2中,如果必须使用 sdp_kernel 上下文管理器,请使用memory efficient或math内核(在Windows上)。

在FlashAttention-2的加持之下,torch.nn.functional.scaled_dot_product_attention的速度提升了大约2倍,在A100 GPU上达到了理论计算峰值的50%-73%。

AOTInductor

AOTInductor是TorchInductor的扩展,用于处理导出的PyTorch模型,对其进行优化,并生成共享库以及其他相关工件。

这些编译的工件可以部署在非Python环境中,经常用于服务器端的推理。

下面的示例演示了如何调用 aot_compile 将模型转换为共享库。

AOTInductor支持与Inductor相同的后端,包括CUDA、ROCm和CPU。

TORCH_LOGS

PyTorch 2.2提供了一个标准化的、可配置的日志记录机制,可用于分析各种子系统的状态,例如编译和分布式操作

可以通过TORCH_LOGS环境变量启用日志。比如通过在命令行中修改环境变量:

将TorchDynamo的日志级别设置为logging.ERROR,将TorchInductor的日志级别设置为logging.DEBUG。

当然也可以在代码中以API的形式使用:

torch.distributed.device_mesh

PyTorch 2.2引入了一个新的抽象,用于表示分布式并行中涉及的 ProcessGroups,称为torch.distributed.device_mesh。

为分布式训练设置分布式通信器(NCCL)是一件麻烦的事情。用户需要编写不同并行度的工作负载,并为每个并行度手动设置和管理NCCL通信器(ProcessGroup )。

这个过程可能很复杂,容易出错。而DeviceMesh 可以简化此过程,使其更易于管理。

DeviceMesh 是管理 ProcessGroup 的更高级别的抽象。它允许用户毫不费力地创建节点间和节点内进程组,而不必担心如何为不同的子进程组正确设置等级。

例如,数组的其中一个维度可以表示FSDP中的数据并行(data parallelism),而另一个维度可以表示FSDP中的张量并行(tensor parallelism)。

用户还可以通过 DeviceMesh 轻松管理底层process_groups,以实现多维并行。

DeviceMesh在处理多维并行性(如3D并行)时很有用。如上图所示,当你的并行解决方案需要跨主机和每个主机内部进行通信时,可以创建一个2D网格,用于连接每个主机中的设备,并以同构设置将每个设备与其他主机上的对应设备连接起来。

借助 init_device_mesh() ,我们可以在短短两行内完成上面这个2D设置:

而如果不使用DeviceMesh,我们大概需要自己写下面这一堆代码:

当然,如果需要,我们仍然可以访问底层 ProcessGroup:

优化器的改进

大概有以下几点:

编译优化器在所有基准测试中都提高了性能:HuggingFace +18%、TorchBench +19%、TIMM +8% E2E;

编译的优化器增加对cudagraphs的支持;

对测试套件中所有模型进行平均,每个测试套件的基准测试平均编译时间增加约40秒;正在进行的优化可能会将其降低到30秒以下。

用于多张量优化器编译的inductor中缺少的主要功能是foreach算子的高效编码生成。

在调度器内部,将所有在下放过程中注册的缓冲区列表凝聚到ForeachKernelSchedulerNodes中(FusedSchedulerNode的子类)。

为了检查融合是否合法,每个内部 SchedulerNode 执行的写操作必须与消费SchedulerNode在同一列表索引处的读操作相匹配。

此外,正常的垂直融合规则必须允许在消费者和生产者SchedulerNode列表的每个索引处进行融合。

如果满足了这些条件,ForeachKernelSchedulerNode将垂直融合成一个 ForeachKernelSchedulerNode,其中每个列表上的相应点操作都将被融合。

通过实现这种融合,可以将一系列 foreach 运算融合到单个内核中,从而实现多张量优化器的完全融合。

性能改进

TorchInductor中添加了许多性能优化,包括对torch.concat的水平融合支持、改进的卷积布局优化、以及改进scaled_dot_product_attention模式匹配。

PyTorch 2.2还包括aarch64的许多性能增强,包括对mkldnn权重预打包的支持、改进的ideep基元缓存,以及通过对OneDNN的固定格式内核改进,来提高推理速度。

参考资料:

https://pytorch.org/blog/pytorch2-2/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/377851.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Octave实现位置式PID算法

由于Matlab不让用,只能“你不让爷用,爷就用别的”,选择开源的Octave以及scilab进行相关领域的学习。Octave的代码和Matlab几乎是100%相同的,只有一些专用的包的函数,可能有些还没来得及写,或者有些差异。但…

NLP_语言模型的雏形 N-Gram 模型

文章目录 N-Gram 模型1.将给定的文本分割成连续的N个词的组合(N-Gram)2.统计每个N-Gram在文本中出现的次数,也就是词频3.为了得到一个词在给定上下文中出现的概率,我们可以利用条件概率公式计算。具体来讲,就是计算给定前N-1个词时&#xff0…

Redis篇之redis是单线程

一、redis是单线程 Redis是单线程的,但是为什么还那么快?主要原因有下面3点原因: 1. Redis是纯内存操作,执行速度非常快。 2. 采用单线程,避免不必要的上下文切换可竞争条件,多线程还要考虑线程安全问题。 …

硬件大熊原创合集(2024/01更新)

则2024-01月份更新篇章: NFC芯片WS1850的9个典型问题-篇章1 凡夫畏果,菩萨畏因 赶在春节前,做个红包封面,一轮操作下来,发现自己在美工设计这块实在是太欠缺,还好图像处理AI出来了,用Midijourne…

软考 系统分析师系列知识点之信息系统战略规划方法(3)

接前一篇文章:软考 系统分析师系列知识点之信息系统战略规划方法(2) 所属章节: 第7章. 企业信息化战略与实施 第4节. 信息系统战略规划方法 7.4.1 企业系统规划法 7. 确定管理部门对系统的要求 BSP的出发点是管理部门对系统的要…

WordPress如何实现随机显示一句话经典语录?怎么添加到评论框中?

我们在一些WordPress网站的顶部或侧边栏或评论框中,经常看到会随机显示一句经典语录,他们是怎么实现的呢? 其实,boke112百科前面跟大家分享的『WordPress集成一言(Hitokoto)API经典语句功能』一文中就提供…

Tomcat之虚拟主机

1.创建存放网页的目录 mkdir -p /web/{a,b} 2.添加jsp文件 vi /web/a/index.jsp <% page language"java" import"java.util.*" pageEncoding"UTF-8"%> <html> <head><title>JSP a page</title> </head> …

BUUCTF-Real-[Tomcat]CVE-2017-12615

目录 漏洞描述 一、漏洞编号&#xff1a;CVE-2017-12615 二、漏洞复现 get flag 漏洞描述 CVE-2017-12615&#xff1a;远程代码执行漏洞 影响范围&#xff1a;Apache Tomcat 7.0.0 - 7.0.79 (windows环境) 当 Tomcat 运行在 Windows 操作系统时&#xff0c;且启用了 HTTP P…

力扣面试题 05.06. 整数转换(位运算)

Problem: 面试题 05.06. 整数转换 文章目录 题目描述思路及解法复杂度Code 题目描述 思路及解法 1.通过将两个数进行异或操作求出两个数中不同的位(不同的位异或后为二进制1); 2.统计异或后不同的位的个数(即异或后二进制为1的个数) 复杂度 时间复杂度: O ( 1 ) O(1) O(1) 空间…

《Git 简易速速上手小册》第9章:Git 工作流程定制(2024 最新版)

文章目录 9.1 选择合适的工作流9.1.1 基础知识讲解9.1.2 重点案例&#xff1a;为中等规模的 Python 项目选择 Feature Branch 工作流9.1.3 拓展案例 1&#xff1a;适应 Gitflow 工作流的大型项目9.1.4 拓展案例 2&#xff1a;使用 Forking 工作流的开源 Python 项目 9.2 定制化…

94.网游逆向分析与插件开发-游戏窗口化助手-地图数据获取的逆向分析与C++代码还原

内容参考于&#xff1a;易道云信息技术研究院VIP课 上一个内容&#xff1a;升级经验数据获取的逆向分析 码云地址&#xff08;游戏窗口化助手 分支&#xff09;&#xff1a;https://gitee.com/dye_your_fingers/sro_-ex.git 码云版本号&#xff1a;c4351a5b346d8953a1a8e3ec…

Hgame week1 web

1.Bypass it 不准注册&#xff0c;禁用一下js成功注册登录拿到flag 2.ezHTTP 跟着提示走就行 jwt解析一下 3.点击选课发包时候显示已满 一直发包就会选上 每个都一直发包最后就可以全选课成功 后来得知是后天每隔一段时间会放出一些课&#xff0c;一直发包就能在放课的时候选到…

CDN相关和HTTP代理

CDN相关和HTTP代理 参考&#xff1a; 《透视 HTTP 协议》——chrono 把这两个放在一起是因为容易搞混&#xff0c;我一开始总以为CDN就是HTTP代理&#xff0c;但是看了极客时间里透视HTTP协议的讲解&#xff0c;感觉又不仅于此&#xff0c;于是专门写下来。 先说结论&#xf…

计算机组成原理——计算机系统概述

文章目录 概要计算机硬件的基本组成早期冯诺依曼的结构介绍特点 现代计算机的结构介绍五大部件的归属 五大部件存储器&#xff1a;存储体 MAR、MDR运算器控制器 运行原理 计算机软件系统软件和应用软件三种级别的语言编译程序与解释程序的区别 软件硬件功能程序的等价性指令集体…

LLaMA 模型中的Transformer架构变化

目录 1. 前置层归一化&#xff08;Pre-normalization&#xff09; 2. RMSNorm 归一化函数 3. SwiGLU 激活函数 4. 旋转位置嵌入&#xff08;RoPE&#xff09; 5. 注意力机制优化 6. Group Query Attention 7. 模型规模和训练超参数 8. 分布式模型训练 前置归一化与后置…

音视频色彩:RGB/YUV

目录 1.RGB 1.1介绍 1.2分类 1.2.1RGB16 1)RGB565 2)RGB555 1.2.2RGB24 1.2.3RGB222 2.YUV 2.1介绍 2.2分类 2.2.1 YUV444 2.2.2 YUV 422 2.2.3 YUV 420 2.3存储格式 2.3.1 YUYV 2.3.2 UYVY 2.3.3 YUV 422P 2.3.4 YUV420P/YUV420SP 2.3.5 YU12 和…

JavaScript流程控制详解之循环结构(倒三角、九九乘法表)

循环结构 在JavaScript中&#xff0c;循环语句指的是在满足某个条件下重复执行 指定的一段代码。若条件结果为true,则重复执行&#xff0c;则进入循环&#xff0c;否则结束循环。 在JavaScript中&#xff0c;循环语句如下&#xff1a; while语句do…while语句for语句 while…

springboot163美食推荐商城的设计与实现

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

WifiConfigStore初始化读取-Android13

WifiConfigStore初始化读取 1、StoreData创建并注册2、WifiConfigStore读取2.1 文件读取流程2.2 时序图2.3 日志 1、StoreData创建并注册 packages/modules/Wifi/service/java/com/android/server/wifi/WifiConfigManager.java mWifiConfigStore.registerStoreData(mNetworkL…

Windows 安装 MySQL 最新最简教程

Windows 安装 MySQL 最新最简教程 官网地址 https://dev.mysql.com/downloads/mysql/下载 MySQL zip 文件 配置 MySQL1、解压文件 2、进入 bin 目录 搜索栏输入 cmd 回车进入命令行 C:\Users\zhong\Desktop\MySQL\mysql-8.3.0-winx64\mysql-8.3.0-winx64\bin 注意这里是你自己…