LLaMA 模型中的Transformer架构变化

目录

1. 前置层归一化(Pre-normalization)

2. RMSNorm 归一化函数

3. SwiGLU 激活函数

4. 旋转位置嵌入(RoPE)

5. 注意力机制优化

6. Group Query Attention

7. 模型规模和训练超参数

8. 分布式模型训练

前置归一化与后置归一化的区别

前置归一化(Pre-normalization)

后置归一化(Post-normalization)

结论


   

1. 前置层归一化(Pre-normalization)

LLaMA模型采用了前置层归一化策略,这意味着在每个子层(自注意力层和前馈网络)的输入之前进行层归一化。这与传统的Transformer中的后置层归一化不同,后者在子层输出之后进行归一化。

2. RMSNorm 归一化函数

LLaMA模型使用RMSNorm作为其归一化函数,这是一种替代传统层归一化的方法,它在保持计算效率的同时,专注于规范化权重矩阵的行,以实现更快的收敛和更好的泛化。

3. SwiGLU 激活函数

在LLaMA模型的Transformer架构中,激活函数从传统的ReLU或GELU更换为SwiGLU。SwiGLU是一种基于Swish激活函数的GLU变体,它提供了更好的梯度流动和可能的性能提升。

4. 旋转位置嵌入(RoPE)

LLaMA模型还采用了旋转位置嵌入(RoPE)来代替传统的位置编码方法。RoPE通过将位置信息编码为旋转矩阵,使模型能够更有效地捕捉序列中元素之间的位置关系。

5. 注意力机制优化

LLaMA模型可能包含对注意力机制的优化,例如稀疏注意力机制,以减少计算复杂度和内存需求。这些优化措施有助于提高模型的计算效率。

6. Group Query Attention

在LLaMA v2中,使用了Group Query Attention技术,这是一种将query分组,组内共享Key-Value的方法,旨在减少缓存量并加速计算,同时保持与Multi-Query Attention相似的效果。

7. 模型规模和训练超参数

LLaMA模型有不同的规模版本,从几十亿到数百亿参数不等。每个版本的模型都有特定的超参数设置,例如隐藏层大小、头数、层数、学习率等。

8. 分布式模型训练

由于LLaMA模型的参数量非常大,需要依赖分布式模型训练框架来完成训练过程,这可能涉及到大量的GPU资源和优化的训练策略。

前置归一化与后置归一化的区别

前置归一化(Pre-normalization)
  • 位置:在子层(如自注意力和前馈网络)的输入之前进行归一化。
  • 优点:有助于提高训练过程中的稳定性,特别是在模型参数初始化阶段,可以降低梯度爆炸的风险。
  • 缺点:可能需要更精细的学习率调整和优化策略。
后置归一化(Post-normalization)
  • 位置:在子层的输出之后进行归一化。
  • 优点:这是原始Transformer模型中的标准做法,对于许多任务而言效果良好。
  • 缺点:在大型模型和数据集上可能导致训练初期的梯度不稳定问题。
结论

LLaMA模型中的前置层归一化是为了提高模型的训练稳定性和效率,而后置层归一化则是Transformer的传统方法。在实际应用中,前置归一化可能更适合于训练大型模型,因为它可以减少训练初期的梯度问题。然而,这两种方法都有其优势和局限性,选择哪一种取决于具体的模型设计和任务需求。

参考:

  • 深入解析LLaMA如何改进Transformer的底层结构 - 知乎
  • LLaMA v1/2模型结构总览 - 知乎
  • LLaMA Explained | Papers With Code
  • Understanding Llama2: KV Cache, Grouped Query Attention, Rotary ...

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/377829.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

音视频色彩:RGB/YUV

目录 1.RGB 1.1介绍 1.2分类 1.2.1RGB16 1)RGB565 2)RGB555 1.2.2RGB24 1.2.3RGB222 2.YUV 2.1介绍 2.2分类 2.2.1 YUV444 2.2.2 YUV 422 2.2.3 YUV 420 2.3存储格式 2.3.1 YUYV 2.3.2 UYVY 2.3.3 YUV 422P 2.3.4 YUV420P/YUV420SP 2.3.5 YU12 和…

JavaScript流程控制详解之循环结构(倒三角、九九乘法表)

循环结构 在JavaScript中,循环语句指的是在满足某个条件下重复执行 指定的一段代码。若条件结果为true,则重复执行,则进入循环,否则结束循环。 在JavaScript中,循环语句如下: while语句do…while语句for语句 while…

springboot163美食推荐商城的设计与实现

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计,课程设计参考与学习用途。仅供学习参考, 不得用于商业或者非法用途,否则,一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

WifiConfigStore初始化读取-Android13

WifiConfigStore初始化读取 1、StoreData创建并注册2、WifiConfigStore读取2.1 文件读取流程2.2 时序图2.3 日志 1、StoreData创建并注册 packages/modules/Wifi/service/java/com/android/server/wifi/WifiConfigManager.java mWifiConfigStore.registerStoreData(mNetworkL…

Windows 安装 MySQL 最新最简教程

Windows 安装 MySQL 最新最简教程 官网地址 https://dev.mysql.com/downloads/mysql/下载 MySQL zip 文件 配置 MySQL1、解压文件 2、进入 bin 目录 搜索栏输入 cmd 回车进入命令行 C:\Users\zhong\Desktop\MySQL\mysql-8.3.0-winx64\mysql-8.3.0-winx64\bin 注意这里是你自己…

【数据分享】1929-2023年全球站点的逐日平均风速数据(Shp\Excel\免费获取)

气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、能见度等指标,说到气象数据,最详细的气象数据是具体到气象监测站点的数据! 有关气象指标的监测站点数据,之前我们分享过1929-2023年全球气象站…

深入探索 Express.js 的高级特性

引言 Express.js 是一个基于 Node.js 平台的 Web 开发框架,旨在提供一种简单、易于使用的方式来创建 Web 应用程序。由于其灵活性和可扩展性,它已经成为了 Node.js 社区最受欢迎的框架之一。在本文中,我们将重点介绍 Express.js 的高级特性&…

Python 深入理解 os 和 sys 模块

Python 深入理解 os 和 sys 模块 OS 介绍代码智能连接(拼接)路径创建目录展示(列出目录)删除文件重命名文件或目录 sys 介绍代码命令行参数处理 (sys.argv)标准输入输出重定向 (sys.stdin, sys.stdout, sys.stderr):解…

08-Java过滤器模式 ( Filter Pattern )

Java过滤器模式 实现范例 过滤器模式(Filter Pattern)或允许开发人员使用不同的标准来过滤一组对象,通过逻辑运算以解耦的方式把它们连接起来 过滤器模式(Filter Pattern) 又称 标准模式(Criteria Pattern…

基于LLM的Agent的兴起及其潜力:综述

原文链接:https://arxiv.org/pdf/2309.07864v1.pdf 1. Introduction LLM-based Agent的基本构成。本文认为,构成LLM-based Agent的核心部件有三个: brain: 主要目标有2个—信息记忆、信息处理perception: 主要目标在于让agent能够感受到更…

YOLOv8改进 | 利用训练好权重文件计算YOLOv8的FPS、推理每张图片的平均时间(科研必备)

一、本文介绍 本文给大家带来的改进机制是利用我们训练好的权重文件计算FPS,同时打印每张图片所利用的平均时间,模型大小(以MB为单位),同时支持batch_size功能的选择,对于轻量化模型的读者来说,本文的内容对你一定有帮助,可以清晰帮你展示出模型速度性能的提升以及轻量…

二进制安全虚拟机Protostar靶场(8)heap3 Fastbins unlink exploit

前言 这是一个系列文章&#xff0c;之前已经介绍过一些二进制安全的基础知识&#xff0c;这里就不过多重复提及&#xff0c;不熟悉的同学可以去看看我之前写的文章 heap3 程序静态分析 https://exploit.education/protostar/heap-three/#include <stdlib.h> #include …

三、设计模式相关理论总结

一、面向对象编程 1.1 概述 简称Object Oriented Program(OOP)&#xff0c;指以类或对象作为基础组织单元&#xff0c;遵循封装、继承、多态以及抽象等特性&#xff0c;进行编程。其中面向对象不一定遵循封装、继承、封装和多态等特性&#xff0c;只是前人总结的套路规范&…

携程网首页案例制作(移动端)

技术选型 方案&#xff1a;采用单独制作移动页面方案 技术&#xff1a;布局采用flex布局 body样式 通常要设置最大宽度&#xff0c;最小宽度&#xff0c;水平居中&#xff0c;字体设置&#xff0c;背景颜色以及相关初始化 body {max-width: 540px;min-width: 320px;margin…

CDH6.3.2 多 Spark 版本共存

一 部署Spark客户端 1.1 部署spark3客户端 tar -zxvf spark-3.3.1-bin-3.0.0-cdh6.3.2.tgz -C /opt/cloudera/parcels/CDH/lib cd /opt/cloudera/parcels/CDH/lib mv spark-3.3.1-bin-3.0.0-cdh6.3.2/ spark3将 CDH 集群的 spark-env.sh 复制到 /opt/cloudera/parcels/CDH/li…

RxJava Subject

目录 AsyncSubjectBehaviorSubjectPublishSubjectReplaySubjectSerializedSubjectUnicastSubject 在Rxjava中&#xff0c; Subject可以同时表示Observer和Observable, 允许从单个源到多个子观察者multiple child Observers。 除了 onSubscribe(io.reactivex.disposables.Dispos…

25、数据结构/二叉树相关练习20240207

一、二叉树相关练习 请编程实现二叉树的操作 1.二叉树的创建 2.二叉树的先序遍历 3.二叉树的中序遍历 4.二叉树的后序遍历 5.二叉树各个节点度的个数 6.二叉树的深度 代码&#xff1a; #include<stdlib.h> #include<string.h> #include<stdio.h> ty…

使用easyExcel 定义表头 字体 格式 颜色等,定义表内容,合计

HeadStyle 表头样式注解 HeadFontStyle 表头字体样式 HeadStyle(fillPatternType FillPatternTypeEnum.SOLID_FOREGROUND, fillForegroundColor 22) HeadFontStyle(fontHeightInPoints 12) 以下为实现效果

PostgreSql与Postgis安装

POstgresql安装 1.登录官网 PostgreSQL: Linux downloads (Red Hat family) 2.选择版本 3.安装 ### 源 yum install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-redhat-repo-latest.noarch.rpm ### 客户端 yum install postgresql14 ###…

vue 实现一个持续时间定时器组件

vue 实现一个定时器组件 效果图子组件父组件 效果图 子组件 新建一个timer.vue文件 <template><span :class"{red: string > 600}">{{ string | formatDurationS }}</span> </template> <script>export default {name: timer,pro…