CentOS7搭建Hadoop集群

准备工作

1、准备三台虚拟机,参考:CentOS7集群环境搭建(3台)-CSDN博客

2、配置虚拟机之间免密登录,参考:CentOS7集群配置免密登录-CSDN博客

3、虚拟机分别安装jdk,参考:CentOS7集群安装JDK1.8-CSDN博客

4、下载Hadoop安装包,下载地址:链接:https://pan.baidu.com/s/1f1DmqNNFBvBDKi5beYl3Jg?pwd=6666

搭建Hadoop集群

集群部署规划

一、上传并解压Hadoop安装包

1、将hadoop3.3.4.tar.gz使用XFTP上传到opt目录下面的software文件夹下面
2、进入到Hadoop安装包路径
cd /opt/software
3、解压安装文件到/opt/moudle下面
tar -zxvf hadoop-3.3.4.tar.gz  -C /opt/moudle/

4、查看是否解压成功
cd /opt/moudle
ll

5、重命名
 mv hadoop-3.3.4/ hadoop

6、将Hadoop添加到环境变量

1、获取Hadoop安装路径

进入Hadoop目录下输入

pwd
#输出
opt/moudle/hadoop

2、打开/etc/profile.d/my_env.sh文件

 sudo vim /etc/profile.d/my_env.sh

在profile文件末尾添加hadoop路径:(shitf+g)

#HADOOP_HOME
export HADOOP_HOME=/opt/moudle/hadoop
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin

3、保存后退出

esc键然后

:wq

4、分发环境变量文件

分发脚本之前配置的有可以去前面的文章看看

sudo /home/user/bin/xsync /etc/profile.d/my_env.sh

5、source 使之生效(3台节点)

[user@hadoop102 module]$ source /etc/profile.d/my_env.sh
[user@hadoop103 module]$ source /etc/profile.d/my_env.sh
[user@hadoop104 module]$ source /etc/profile.d/my_env.sh

二、配置集群

1、核心配置文件

配置core-site.xml
 

cd $HADOOP_HOME/etc/hadoop
vim core-site.xml

文件内容如下(在<configuration><configuration>中间输入):

我这样配置不知道为啥用不了(直接用的root用户)加红的地方换成root


<!-- 把多个NameNode的地址组装成一个集群mycluster -->
  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://mycluster</value>
  </property>

  <!-- 指定hadoop运行时产生文件的存储目录 -->
  <property>
    <name>hadoop.tmp.dir</name>
    <value>/opt/moudle/hadoop/data</value>
  </property>
<!-- 配置NN故障转移的 ZK集群-->
<property>
    <name>ha.zookeeper.quorum</name>
    <value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value>
</property>

<!-- 配置HDFS网页登录使用的静态用户为user -->
    <property>
        <name>hadoop.http.staticuser.user</name>
        <value>user</value>
</property>

<!-- 配置该user(superUser)允许通过代理访问的主机节点 -->
    <property>
        <name>hadoop.proxyuser.user.hosts</name>
        <value>*</value>
</property>
<!-- 配置该user(superUser)允许通过代理用户所属组 -->
    <property>
        <name>hadoop.proxyuser.user.groups</name>
        <value>*</value>
</property>
<!-- 配置该user(superUser)允许通过代理的用户-->
    <property>
        <name>hadoop.proxyuser.user.users</name>
        <value>*</value>
</property>

 

 2、HDFS配置文件

配置hdfs-site.xml

vim hdfs-site.xml

文件内容如下在<configuration><configuration>中间输入:


	<!-- NameNode数据存储目录 -->
  <property>
    <name>dfs.namenode.name.dir</name>
    <value>file://${hadoop.tmp.dir}/name</value>
  </property>

  <!-- DataNode数据存储目录 -->
  <property>
    <name>dfs.datanode.data.dir</name>
    <value>file://${hadoop.tmp.dir}/data</value>
  </property>

  <!-- JournalNode数据存储目录 -->
  <property>
    <name>dfs.journalnode.edits.dir</name>
    <value>${hadoop.tmp.dir}/jn</value>
  </property>

  <!-- 完全分布式集群名称 -->
  <property>
    <name>dfs.nameservices</name>
    <value>mycluster</value>
  </property>

  <!-- 集群中NameNode节点都有哪些 -->
  <property>
    <name>dfs.ha.namenodes.mycluster</name>
    <value>nn1,nn2</value>
  </property>

  <!-- NameNode的RPC通信地址 -->
  <property>
    <name>dfs.namenode.rpc-address.mycluster.nn1</name>
    <value>hadoop102:8020</value>
  </property>
  <property>
    <name>dfs.namenode.rpc-address.mycluster.nn2</name>
    <value>hadoop103:8020</value>
  </property>

  <!-- NameNode的http通信地址 -->
  <property>
    <name>dfs.namenode.http-address.mycluster.nn1</name>
    <value>hadoop102:9870</value>
  </property>
  <property>
    <name>dfs.namenode.http-address.mycluster.nn2</name>
    <value>hadoop103:9870</value>
  </property>

  <!-- 指定NameNode元数据在JournalNode上的存放位置 -->
  <property>
    <name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://hadoop102:8485;hadoop103:8485;hadoop104:8485/mycluster</value>
  </property>

  <!-- 访问代理类:client用于确定哪个NameNode为Active -->
  <property>
    <name>dfs.client.failover.proxy.provider.mycluster</name>
    <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
  </property>

  <!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 -->
  <property>
    <name>dfs.ha.fencing.methods</name>
    <value>sshfence</value>
  </property>

  <!-- 使用隔离机制时需要ssh秘钥登录-->
  <property>
    <name>dfs.ha.fencing.ssh.private-key-files</name>
    <value>/home/user/.ssh/id_rsa</value>
  </property>
<!-- 启用nn故障自动转移 -->
<property>
	 <name>dfs.ha.automatic-failover.enabled</name>
	 <value>true</value>
</property>    
    <!-- 测试环境指定HDFS副本的数量1 -->
    <property>
        <name>dfs.replication</name>
        <value>3</value>
    </property>

3、YARN配置文件

配置yarn-site.xml

vim yarn-site.xml

文件内容如下(在<configuration><configuration>中间输入):


	<property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>

    <!-- 启用resourcemanager ha -->
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>
 
    <!-- 声明两台resourcemanager的地址 -->
    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>cluster-yarn1</value>
    </property>

    <!--指定resourcemanager的逻辑列表-->
    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
    </property>
<!-- ========== rm1的配置 ========== -->
    <!-- 指定rm1的主机名 -->
    <property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>hadoop102</value>
    </property>

    <!-- 指定rm1的web端地址 -->
    <property>
        <name>yarn.resourcemanager.webapp.address.rm1</name>
        <value>hadoop102:8088</value>
    </property>

    <!-- 指定rm1的内部通信地址 -->
    <property>
        <name>yarn.resourcemanager.address.rm1</name>
        <value>hadoop102:8032</value>
    </property>

    <!-- 指定AM向rm1申请资源的地址 -->
    <property>
        <name>yarn.resourcemanager.scheduler.address.rm1</name>  
        <value>hadoop102:8030</value>
    </property>

    <!-- 指定供NM连接的地址 -->  
    <property>
    <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
        <value>hadoop102:8031</value>
    </property>

<!-- ========== rm2的配置 ========== -->
    <!-- 指定rm2的主机名 -->
    <property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>hadoop103</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address.rm2</name>
        <value>hadoop103:8088</value>
    </property>
    <property>
        <name>yarn.resourcemanager.address.rm2</name>
        <value>hadoop103:8032</value>
    </property>
    <property>
        <name>yarn.resourcemanager.scheduler.address.rm2</name>
        <value>hadoop103:8030</value>
    </property>

    <property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
        <value>hadoop103:8031</value>
    </property>


    <!-- 指定zookeeper集群的地址 --> 
    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>hadoop102:2181,hadoop103:2181,hadoop104:2181</value>
    </property>

    <!-- 启用RM自动故障转移 --> 
    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>
 
    <!-- 指定resourcemanager的状态信息存储在zookeeper集群 --> 
    <property>
        <name>yarn.resourcemanager.store.class</name>     <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>

    <!-- 环境变量的继承 -->
    <property>
        <name>yarn.nodemanager.env-whitelist</name>
        <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
    </property>
    
    <!--yarn单个容器允许分配的最大最小内存 -->
    <property>
        <name>yarn.scheduler.minimum-allocation-mb</name>
        <value>512</value>
    </property>
    <property>
        <name>yarn.scheduler.maximum-allocation-mb</name>
        <value>4096</value>
    </property>
    
    <!-- yarn容器允许管理的物理内存大小 -->
    <property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>4096</value>
    </property>
    
    <!-- 关闭yarn对物理内存和虚拟内存的限制检查 -->
    <property>
        <name>yarn.nodemanager.pmem-check-enabled</name>
        <value>true</value>
    </property>
    <property>
        <name>yarn.nodemanager.vmem-check-enabled</name>
        <value>false</value>
    </property>

4、MapReduce配置文件

配置mapred-site.xml

vim mapred-site.xml

文件内容如下(在<configuration><configuration>中间输入):


	<!-- 指定MapReduce程序运行在Yarn上 -->
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>

5、配置workers

vim /opt/moudle/hadoop/etc/hadoop/workers

在该文件中增加如下内容(localhost删除):

hadoop102
hadoop103
hadoop104

注意:该文件中添加的内容结尾不允许有空格,文件中不允许有空行。

三、配置历史服务器

为了查看程序的历史运行情况,需要配置一下历史服务器。具体配置步骤如下:

1、配置mapred-site.xml

vim mapred-site.xml

在该文件里面增加如下配置。

<!-- 历史服务器端地址 -->
<property>
    <name>mapreduce.jobhistory.address</name>
    <value>hadoop102:10020</value>
</property>

<!-- 历史服务器web端地址 -->
<property>
    <name>mapreduce.jobhistory.webapp.address</name>
    <value>hadoop102:19888</value>
</property>

四、配置日志的聚集

日志聚集概念:应用运行完成以后,将程序运行日志信息上传到HDFS系统上。

日志聚集功能好处:可以方便的查看到程序运行详情,方便开发调试。

注意:开启日志聚集功能,需要重新启动NodeManager ResourceManagerHistoryManager

开启日志聚集功能具体步骤如下:

1、配置yarn-site.xml

vim yarn-site.xml

在该文件里面增加如下配置。

<!-- 开启日志聚集功能 -->
<property>
    <name>yarn.log-aggregation-enable</name>
    <value>true</value>
</property>

<!-- 设置日志聚集服务器地址 -->
<property>  
    <name>yarn.log.server.url</name>  
    <value>http://hadoop102:19888/jobhistory/logs</value>
</property>

<!-- 设置日志保留时间为7天 -->
<property>
    <name>yarn.log-aggregation.retain-seconds</name>
    <value>604800</value>
</property>

五、分发Hadoop

xsync /opt/moudle/hadoop/

六、启动Hadoop-HA

1、在3个JournalNode节点上,输入以下命令启动journalnode服务

进入/opt/moudle/hadoop

hdfs --daemon start journalnode

2、在hadoop102[nn1]上,对其进行格式化,并启动

hdfs namenode -format
hdfs --daemon start namenode

3、在hadoop103[nn2]上,同步nn1的元数据信息

hdfs namenode -bootstrapStandby

4、启动hadoop103[nn2]

 hdfs --daemon start namenode

5、格式化zkfc(102)

zookeeper必须先启动

      zk.sh start具体参考zookeeper集群安装

hdfs zkfc -formatZK

6、在所有nn节点(102、103)启动zkfc

 hdfs --daemon start zkfc

7、在所有节点上(3台),启动datanode

hdfs --daemon start datanode

8、第二次启动可以在NameNode所在节点执行start-dfs.sh启动HDFS所有进程

(这一步不用管)关闭之时,提示我权限不够,我直接用root用户操作,然后在hadoop-env.sh中加入以下几行

export HDFS_NAMENODE_USER="root"
export HDFS_DATANODE_USER="root"
export HDFS_JOURNALNODE_USER="root"
export HDFS_ZKFC_USER="root"

在yarn-env.sh中加入了以下几行 :然后分发给三台机器

export YARN_NODEMANAGER_USER="root"
export YARN_RESOURCEMANAGER_USER="root"
start-dfs.sh
stop-dfs.sh

9、在ResourceMamager所在节点执行start-yarn.sh 启动yarn所有进程

start-yarn.sh
stop-yarn.sh

10、部署完成可以通过start-all.sh和stop-all.sh控制Hadoop-HA所有节点的启停

start-all.sh
stop-all.sh

Hadoop群起脚本

1、在/home/user/bin目录下创建hdp.sh

2、写入以下内容

#!/bin/bash
if [ $# -lt 1 ]
then
    echo "No Args Input..."
    exit ;
fi
case $1 in
"start")
        echo " =================== 启动 hadoop集群 ==================="

        echo " --------------- 启动 hdfs 和 yarn ---------------"
        ssh hadoop102 "/opt/moudle/hadoop/sbin/start-all.sh"
        echo " --------------- 启动 historyserver ---------------"
        ssh hadoop102 "/opt/moudle/hadoop/bin/mapred --daemon start historyserver"
;;
"stop")
        echo " =================== 关闭 hadoop集群 ==================="

        echo " --------------- 关闭 historyserver ---------------"
        ssh hadoop102 "/opt/moudle/hadoop/bin/mapred --daemon stop historyserver"
        echo " --------------- 关闭 hdfs 和 yarn ---------------"
        ssh hadoop102 "/opt/moudle/hadoop/sbin/stop-all.sh"
;;
*)
    echo "Input Args Error..."
;;
esac

3、增加(+x指的是增加可以运行权限)权限

chmod +x hdp.sh

4、启动集群

hdp.sh start

查看进程

xcall.sh jps

5、关闭集群

hdp.sh stop

查看进程

xcall.sh jps

UI

http://hadoop102:9870/dfshealth.html#tab-overview

http://hadoop102:8088/clustericon-default.png?t=N7T8http://hadoop102:8088/cluster

至此Hadoop集群就顺利搭建完成,遇见错误可以私我,共勉~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/375800.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

mysql入门到精通005-基础篇-约束

1、概述 1.1 概念 约束是作用于表中字段上的规则&#xff0c;用于限制储存在表中的数据。 1.2 目的 保证数据库中数据的正确性、有效性和完整性。 1.3 常见的约束分类 一旦谈到外键&#xff0c;则至少涉及2张表约束是作用于表中字段上的&#xff0c;可以在创建表/修改表的…

c++设计模式之代理模式

作用 代理模式主要用于&#xff0c;通过代理类&#xff0c;来控制实际对象的访问权限 案例 class VideoSite { public:virtual void freeVideo()0;virtual void vipVideo()0;virtual void trickVideo()0; };class FixBugVideoSite:public VideoSite { public:void freeVideo()…

uniCloud ---- schema2code

目录 schema2code有两种方式 label属性 component属性 group属性 应用 DB Schema里有大量的信息&#xff0c;其实有了这些信息&#xff0c;前端将无需自己开发表单维护界面&#xff0c;uniCloud可以自动生成新增、修改、列表、详情的前端页面&#xff0c;以及admin端的列…

人工智能(pytorch)搭建模型24-SKAttention注意力机制模型的搭建与应用场景

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下人工智能(pytorch)搭建模型24-SKAttention注意力机制模型的搭建与应用场景&#xff0c;本文将介绍关于SKAttention注意力机制模型的搭建&#xff0c;SKAttention机制具有灵活性和通用性&#xff0c;可应用于计算机视…

【极数系列】Flink集成KafkaSink 实时输出数据(11)

文章目录 01 引言02 连接器依赖2.1 kafka连接器依赖2.2 base基础依赖 03 使用方法04 序列化器05 指标监控06 项目源码实战6.1 包结构6.2 pom.xml依赖6.3 配置文件6.4 创建sink作业 01 引言 KafkaSink 可将数据流写入一个或多个 Kafka topic 实战源码地址,一键下载可用&#xf…

Go语言安全编码:crypto/sha1库全面解析

Go语言安全编码&#xff1a;crypto/sha1库全面解析 简介SHA-1基础原理和特点SHA-1与其他哈希算法的比较代码示例&#xff1a;基本的SHA-1哈希生成 使用crypto/sha1处理数据处理字符串和文件的SHA-1哈希代码示例&#xff1a;为文件生成SHA-1哈希 常见错误和最佳实践 在实际项目中…

C++ PE文件信息解析

尝试解析PE文件结构, 于是编写了此PE信息助手类, 暂时完成如下信息解析 1.导出表信息(Dll模块, 函数) 2.导入表信息(Dll模块, 函数) 3.资源表信息(字符串表, 版本信息, 清单信息) CPEHelper.h #pragma once// // brief: PE文件解析助手类 // copyright: Copyright 2024 Flame…

Linux------命令行参数

目录 前言 一、main函数的参数 二、命令行控制实现计算器 三、实现touch指令 前言 当我们在命令行输入 ls -al &#xff0c;可以查看当前文件夹下所有文件的信息&#xff0c;还有其他的如rm&#xff0c;touch等指令&#xff0c;都可以帮我们完成相应的操作。 其实运行这些…

2024-02-06 TCP/UDP work

1. 画出TCP三次握手和四次挥手的示意图&#xff0c;并且总结TCP和UDP的区别 三次握手&#xff1a; 4次挥手&#xff1a; tcp/udp区别 TCP 1. 稳定&#xff0c;提供面向连接的&#xff0c;可靠的数据传输服务 2. 传输过程中&#xff0c;数据无误、数据无丢失、数据无失序、…

python+PyQt5实现指示灯检查

UI: 源代码&#xff1a; # -*- coding: utf-8 -*-# Form implementation generated from reading ui file CheckImageWinFrm.ui # # Created by: PyQt5 UI code generator 5.15.2 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again…

企业邮箱是什么?企业邮箱百科

本文将为大家讲解&#xff1a;1、企业邮箱的定义&#xff1b;2、企业邮箱的主要功能特点&#xff1b;3、企业邮箱如何选择和部署&#xff1b;4、企业邮箱的运营与维护&#xff1b;5、企业邮箱在实际工作中的应用与挑战&#xff1b;6、2024年最新五大企业邮箱盘点   下面提到的…

基础面试题整理6之Redis

1.Redis的应用场景 Redis支持类型&#xff1a;String、hash、set、zset、list String类型 hash类型 set类型 zset类型 list类型 一般用作缓存&#xff0c;例如 如何同时操作同一功能 2.redis是单线程 Redis服务端(数据操作)是单线程&#xff0c;所以Redis是并发安全的,因…

C语言的起源

1940年代&#xff0c;最早的开始&#xff0c;编程语言是机器语言&#xff0c;用0/1表示的、计算机能直接识别和执行的一种机器指令的集合。最早的编程方式&#xff0c;就是给纸带打孔或者卡片机打孔。机器语言直接与硬件沟通&#xff0c;极具针对性&#xff0c;但是非常难于理解…

解密 ARMS 持续剖析:如何用一个全新视角洞察应用的性能瓶颈?

作者&#xff1a;饶子昊、杨龙 应用复杂度提升&#xff0c;根因定位困难重重 随着软件技术发展迭代&#xff0c;很多企业软件系统也逐步从单体应用向云原生微服务架构演进&#xff0c;一方面让应用实现高并发、易扩展、开发敏捷度高等效果&#xff0c;但另外一方面也让软件应…

【分享】如何运用数字I/O来保护继电器

1.简述 在开关系统中&#xff0c;短路或者是开路的情况下&#xff0c;由于存在着额外的电流或者是电压&#xff0c;继电器往往会过载。所有的继电器都有一个最大的承载电流和热切换功率&#xff0c;如果超出了这个范围&#xff0c;会增加继电器焊接在一起的风险&#xff0c;从…

7.electron之渲染线程发送事件,主进程监听事件

如果可以实现记得点赞分享&#xff0c;谢谢老铁&#xff5e; Electron是一个使用 JavaScript、HTML 和 CSS 构建桌面应用程序的框架。 Electron 将 Chromium 和 Node.js 嵌入到了一个二进制文件中&#xff0c;因此它允许你仅需一个代码仓库&#xff0c;就可以撰写支持 Windows、…

蓝桥杯省赛无忧 课件92 行列式

01 什么是行列式 02 行列式的性质 03 高斯消元求行列式

vue+vite项目,动态导入静态资源的几种方式

博主的桌面工具软件已经正式开发&#xff0c;获取方式&#xff1a; 可以关注我的小程序【中二少年工具箱】获取。&#xff08;若小程序更新有延迟&#xff0c;可先收藏小程序&#xff09; 通过下载链接 百度网盘: 链接&#xff1a;https://pan.baidu.com/s/15zDnSoEzJGSZLjpD…

kafka 文件存储机制

文章目录 1. 思考四个问题&#xff1a;1.1 topic中partition存储分布&#xff1a;1.2 partiton中文件存储方式&#xff1a;1.3 partiton中segment文件存储结构&#xff1a;1.4 在partition中如何通过offset查找message: 2. kafka日志存储参数配置 Topic是逻辑上的概念&#xff…

Damn Small Linux 停更16年后,2024 回归更新

Damn Small Linux(DSL) 发行版释出了最新的 2024 版本&#xff0c;并重新定义了什么叫“Damn Small”。 DSL 诞生于 2005 年&#xff0c;原本是尝试提供一个 50MB 大小的 LiveCD&#xff0c;2008 年开发停滞。 2024 年原作者 John Andrews 宣布 DSL 复活&#xff0c;在几乎所…