DataX详解和架构介绍

系列文章目录

一、 DataX详解和架构介绍
二、 DataX源码分析 JobContainer
三、DataX源码分析 TaskGroupContainer
四、DataX源码分析 TaskExecutor
五、DataX源码分析 reader
六、DataX源码分析 writer
七、DataX源码分析 Channel


文章目录

  • 系列文章目录
  • DataX是什么?
  • DataX支持的数据源
  • DataX的框架设计
  • DataX核心架构
      • 核心模块介绍:
      • DataX调度流程:
  • DataX部署和配置


DataX是什么?

DataX是阿里开源的异构数据源离线同步工具。它致力于实现包括关系型数据库(如MySQL、Oracle等)、HDFS、Hive、MaxCompute(原ODPS)、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。
在这里插入图片描述

DataX的设计理念是将复杂的网状的同步链路变成了星型数据链路,DataX作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源时,只需要将此数据源对接到DataX,便能与已有的数据源实现无缝数据同步。

DataX的架构主要基于Framework + Plugin的设计模式。它将数据读取和写入抽象成为Reader和Writer插件,这些插件可以接入不同的数据源,实现数据的读取和写入操作。同时,DataX提供了丰富的插件体系,主流的RDBMS数据库、NOSQL、大数据计算系统都已经接入。

DataX的核心优势包括稳定性、高效性、易用性和扩展性。它经过长时间大规模生产环境的验证,能够保证数据同步的稳定性和可靠性;通过多线程、多进程、流式处理等技术手段,实现高效的数据同步;提供简单易用的配置方式,用户可以通过配置文件来定义数据源、目标端、同步策略等;支持丰富的插件体系,可以方便地扩展新的数据源和目标端。

此外,DataX还提供了包括通道(并发)、记录流、字节流三种流控模式,可以随意控制作业速度,让作业在库可以承受的范围内达到最佳的同步速度。同时,它还具有强劲的同步性能、健壮的容错机制以及极简的使用体验等特点。

总之,DataX是一个强大而灵活的数据同步工具,能够有效地解决异构数据源之间的数据同步问题。通过合理的配置和优化,它可以帮助用户实现高效、稳定、可靠的数据同步操作。


DataX支持的数据源

DataX目前已经有了比较全面的插件体系,主流的RDBMS数据库、NOSQL、大数据计算系统都已经接入 。DataX Framework提供了简单的接口与插件交互,提供简单的插件接入机制,只需要任意加上一种插件,就能无缝对接其他数据源。

DataX的框架设计

datax_framework_new
DataX本身作为离线数据同步框架,采用Framework + plugin架构构建。将数据源读取和写入抽象成为Reader/Writer插件,纳入到整个同步框架中。

  • Reader:Reader为数据采集模块,负责采集数据源的数据,将数据发送给Framework。
  • Writer: Writer为数据写入模块,负责不断向Framework取数据,并将数据写入到目的端。
  • Framework:Framework用于连接reader和writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。

DataX核心架构

DataX 3.0采用微内核架构模式, 开源版本支持单机多线程模式完成同步作业运行,本小节按一个DataX作业生命周期的时序图,从整体架构设计非常简要说明DataX各个模块相互关系。
datax_arch

核心模块介绍:

  1. DataX完成单个数据同步的作业,我们称之为Job,DataX接受到一个Job之后,将启动一个进程来完成整个作业同步过程。DataX Job模块是单个作业的中枢管理节点,承担了数据清理、子任务切分(将单一作业计算转化为多个子Task)、TaskGroup管理等功能。
  2. DataXJob启动后,会根据不同的源端切分策略,将Job切分成多个小的Task(子任务),以便于并发执行。Task便是DataX作业的最小单元,每一个Task都会负责一部分数据的同步工作。
  3. 切分多个Task之后,DataX Job会调用Scheduler模块,根据配置的并发数据量,将拆分成的Task重新组合,组装成TaskGroup(任务组)。每一个TaskGroup负责以一定的并发运行完毕分配好的所有Task,默认单个任务组的并发数量为5。
  4. 每一个Task都由TaskGroup负责启动,Task启动后,会固定启动Reader—>Channel—>Writer的线程来完成任务同步工作。
  5. DataX作业运行起来之后, Job监控并等待多个TaskGroup模块任务完成,等待所有TaskGroup任务完成后Job成功退出。否则,异常退出,进程退出值非0。

DataX调度流程:

DataX的调度流程可以分为以下几个步骤:

  • Job切分:首先,DataX的Job模块会根据分库分表策略将Job切分成若干个小的Task。这是为了确保每个Task可以独立执行,并且可以并发执行以提高效率。
  • 并发数与TaskGroup计算:然后,根据用户配置的并发数,DataX会计算需要分配多少个TaskGroup。计算的方式是将总的Task数量除以每个TaskGroup中的Task数量(通常为5),从而得到TaskGroup的数量。
  • TaskGroup分配与启动:接下来,DataX会根据计算出的TaskGroup数量,将Task分配到各个TaskGroup中。每个TaskGroup会启动多个TaskExecutor来执行具体的Task。
  • TaskExecutor启动:当TaskGroup启动后,其中的TaskExecutor会启动ReaderThread和WriterThread。ReaderThread负责从数据源读取数据,WriterThread负责将数据写入目标端。这两个线程协同工作,实现了数据的读取、转换和写入过程。
  • 数据同步:在每个TaskExecutor中,ReaderThread和WriterThread会不断地从数据源读取数据,并将数据写入目标端,直到所有的数据都同步完成。
    整个调度流程依赖于Java底层线程池进行并发控制,DataX通过合理的调度策略和线程管理机制,实现了高效、稳定、可靠的数据同步。

举例来说,用户提交了一个DataX作业,并且配置了20个并发,目的是将一个100张分表的mysql数据同步到odps里面。 DataX的调度决策思路是:

  1. DataXJob根据分库分表切分成了100个Task。
  2. 根据20个并发,DataX计算共需要分配4个TaskGroup。
  3. 4个TaskGroup平分切分好的100个Task,每一个TaskGroup负责以5个并发共计运行25个Task。

DataX部署和配置

  • 工具部署

    • 方法一、直接下载DataX工具包:DataX下载地址

      下载后解压至本地某个目录,进入bin目录,即可运行同步作业:

      $ cd  {YOUR_DATAX_HOME}/bin
      $ python datax.py {YOUR_JOB.json}
      

      自检脚本:
      python {YOUR_DATAX_HOME}/bin/datax.py {YOUR_DATAX_HOME}/job/job.json

    • 方法二、下载DataX源码,自己编译:DataX源码

      (1)、下载DataX源码:

      $ git clone git@github.com:alibaba/DataX.git
      

      (2)、通过maven打包:

      $ cd  {DataX_source_code_home}
      $ mvn -U clean package assembly:assembly -Dmaven.test.skip=true
      

      打包成功,日志显示如下:

      [INFO] BUILD SUCCESS
      [INFO] -----------------------------------------------------------------
      [INFO] Total time: 08:12 min
      [INFO] Finished at: 2015-12-13T16:26:48+08:00
      [INFO] Final Memory: 133M/960M
      [INFO] -----------------------------------------------------------------
      

      打包成功后的DataX包位于 {DataX_source_code_home}/target/datax/datax/ ,结构如下:

      $ cd  {DataX_source_code_home}
      $ ls ./target/datax/datax/
      bin		conf		job		lib		log		log_perf	plugin		script		tmp
      
  • 配置示例:从stream读取数据并打印到控制台

    • 第一步、创建作业的配置文件(json格式)

      可以通过命令查看配置模板: python datax.py -r {YOUR_READER} -w {YOUR_WRITER}

      $ cd  {YOUR_DATAX_HOME}/bin
      $  python datax.py -r streamreader -w streamwriter
      DataX (UNKNOWN_DATAX_VERSION), From Alibaba !
      Copyright (C) 2010-2015, Alibaba Group. All Rights Reserved.
      Please refer to the streamreader document:
          https://github.com/alibaba/DataX/blob/master/streamreader/doc/streamreader.md 
      
      Please refer to the streamwriter document:
           https://github.com/alibaba/DataX/blob/master/streamwriter/doc/streamwriter.md 
       
      Please save the following configuration as a json file and  use
           python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json 
      to run the job.
      
      {
          "job": {
              "content": [
                  {
                      "reader": {
                          "name": "streamreader", 
                          "parameter": {
                              "column": [], 
                              "sliceRecordCount": ""
                          }
                      }, 
                      "writer": {
                          "name": "streamwriter", 
                          "parameter": {
                              "encoding": "", 
                              "print": true
                          }
                      }
                  }
              ], 
              "setting": {
                  "speed": {
                      "channel": ""
                  }
              }
          }
      }
      

      根据模板配置json如下:

      #stream2stream.json
      {
        "job": {
          "content": [
            {
              "reader": {
                "name": "streamreader",
                "parameter": {
                  "sliceRecordCount": 10,
                  "column": [
                    {
                      "type": "long",
                      "value": "10"
                    },
                    {
                      "type": "string",
                      "value": "hello,你好,世界-DataX"
                    }
                  ]
                }
              },
              "writer": {
                "name": "streamwriter",
                "parameter": {
                  "encoding": "UTF-8",
                  "print": true
                }
              }
            }
          ],
          "setting": {
            "speed": {
              "channel": 5
             }
          }
        }
      }
      
    • 第二步:启动DataX

      $ cd {YOUR_DATAX_DIR_BIN}
      $ python datax.py ./stream2stream.json 
      

      同步结束,显示日志如下:

      ...
      2023-12-17 11:20:25.263 [job-0] INFO  JobContainer - 
      任务启动时刻                    : 2023-12-17 11:20:15
      任务结束时刻                    : 2023-12-17 11:20:25
      任务总计耗时                    :                 10s
      任务平均流量                    :              205B/s
      记录写入速度                    :              5rec/s
      读出记录总数                    :                  50
      读写失败总数                    :                   0
      

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/374909.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

探索C语言结构体:编程中的利器与艺术

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:C语言学习 贝蒂的主页:Betty‘s blog 1. 常量与变量 1. 什么是结构体 在C语言中本身就自带了一些数据类型&#x…

前端实现标题滚动点击导航

效果图 右边滚动的html代码 <div class"right-box"><el-tabs v-model"isScrollNow" tab-position"right" class"updateTab" tab-click"scrollTo"style"height: fit-content;"><el-tab-pane label…

C语言之随心所欲打印三角形,金字塔,菱形(倒金字塔)

个人主页&#xff08;找往期文章包括但不限于本期文章中不懂的知识点&#xff09;&#xff1a; 我要学编程(ಥ_ಥ)-CSDN博客 目录 三角形 金字塔 倒金字塔 菱形 三角形 题目&#xff1a;根据输入的行数打印对应的三角形。&#xff08;用 * 号打印&#xff09; #includ…

Python学习路线 - Python高阶技巧 - SQL入门和实战

Python学习路线 - Python高阶技巧 - SQL入门和实战 SQL章节前言无处不在的SQL 数据库介绍无处不在的数据库数据库如何存储数据数据库如何存储数据数据库管理系统(数据库软件)数据库和SQL的关系 Mysql的安装Mysql的介绍Mysql的版本MySQL安装配置环境变量 Mysql的入门使用在命令提…

6-2、T型加减速计算简化【51单片机+L298N步进电机系列教程】

↑↑↑点击上方【目录】&#xff0c;查看本系列全部文章 摘要&#xff1a;本节介绍简化T型加减速计算过程&#xff0c;使其适用于单片机数据处理。简化内容包括浮点数转整型数计算、加减速对称处理、预处理计算 一、浮点数转整型数计算 根据上一节内容已知 常用的晶振大小…

JVM 性能调优 - 四种引用(4)

为什么会有四种引用 我们先回顾下在 Java 虚拟机内存体系(1) 中提到了的垃圾回收算法 1、引用计数法 原理:给对象添加一个引用计数器,每当有一个地方引用它,计数器的值就加一。每当有一个引用失效,计数器的值就减一。当计数器值为零时,这个对象被认为没有其他对象引用,…

一个冷门的js加密逆向分析

先上加密代码供各位先看为敬 (function(){function j2f6c82(ve7deb){var i86905"VPfaI5H|Nc]$^rhn1B8dR.w/u-4!ZetJ?XFM2SY(&sbjlW6GEmAd[L0i,;yx%qozC9U_~g37OkKTpvQD:";var z1a52da8"4H_&|GNcEon:B2-?h]lx.(gkzOdA3eL,9;myV8bJwriRSt6sX75Fvu^p0Ij…

Linux-3进程概念(一)

1.冯诺伊曼结构 1.1 冯诺依曼结构的概念 冯诺依曼结构&#xff0c;又称为普林斯顿结构&#xff0c;是一种将程序指令存储器和数据存储器合并在一起的存储器结构。程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置&#xff0c;因此程序指令和数据的宽度相同&…

日历功能——C语言

实现日历功能&#xff0c;输入年份月份&#xff0c;输出日历 #include<stdio.h>int leap_year(int year) {if(year % 4 0 && year % 100 ! 0 || year % 400 0){return 1;}else{return 0;} }int determine_year_month_day(int *day,int month,int year) {if(mo…

【C++】构造函数、初始化列表,析构函数,拷贝构造函数,运算符重载

注&#xff1a;本博客图片来源于学习笔记: 学习笔记https://gitee.com/box-he-he/learning-notes 完整思维导图请前往该博主码云下载。 目录 注&#xff1a;本博客图片来源于学习笔记: 学习笔记https://gitee.com/box-he-he/learning-notes 完整思维导图请前往该博主码云下载…

带你实现用自己域名打开Tomcat

文章目录 Tomcat1.1、Tomcat 下载1.2、Tomcat 文件图解1.3、 启动或关闭 Tomcat1.3.1、 启动1.3.2、 关闭程序2.1、 修改端口号2.2、修改主机名称Tomcat 1.1、Tomcat 下载 首先去Tomcat 官网下载找到我们需要下载的版本 1.2、To

PKI - 02 对称与非对称密钥算法

文章目录 概述对称密钥算法凯撒密码优点缺点 非对称密钥算法工作原理优点缺点 非对称密钥的的用途一&#xff1a; 一种简单而优雅的“混合加密”解决方案加密解密 非对称密钥的的用途二&#xff1a; 数字签名工作原理工作示意图 扩展 DSA vs RSA 概述 对称密钥算法和非对称密钥…

jvm体系结构

一、Jvm 的介绍 1、JVM体系结构 2、JVM运行时数据区 3、JVM内存模型 JVM运行时内存 共享内存区 线程内存区 3.1、共享内存区 共享内存区 持久带(方法区 其他) 堆(Old Space Young Space(den S0 S1)) 持久代&#xff1a; JVM用持久带&#xff08;Permanent Space&…

使用CICFlowMeter 实现对pcap文件的特征提取【教程】

使用CICFlowMeter 实现对pcap文件的特征提取【教程】 针对现有的关于CICFlowMeter 的使用教程不够全面&#xff0c;一些细节没有展示&#xff0c;我将结合网络上的相关资料和实际的经历&#xff0c;提供一些经验和建议。 configuration information --------------- Windows…

污水处理设备数据分析:潜在市场容量高达1000亿

随着国家可再生能源激励政策和中长期发展规划的不断贯彻落实&#xff0c;一些大型能源投资公司、房地产开发商、装备制造龙头企业和物流运营商瞄准了污水处理设备产业的巨大潜在市场&#xff0c;纷纷加入到了污水处理设备建设的行列。我国污水处理设备行业发展重点已从农户自用…

时间序列之趋势

什么是趋势&#xff1f; 在时间序列中&#xff0c;趋势成分表示序列均值持续的、长期的变化。趋势是一个序列中移动最慢的部分&#xff0c;但却代表最重要的时间尺度。在产品销售的时间序列中&#xff0c;随着越来越多的人逐年了解该产品&#xff0c;市场扩张就可能会产生增长…

JavaScript ATM取款机

①&#xff1a;循环的时候&#xff0c;需要反复提示输入框&#xff0c;所以提示框写到循环里面 ②&#xff1a;退出的条件是用户输入了 4&#xff0c;如果是4&#xff0c;则结束循环&#xff0c;不在弹窗 ③&#xff1a;提前准备一个金额预先存储一个数额 ④&#xff1a;取钱…

【敏感词】敏感词检测功能v1.1.0版本正式上线

背景 为了解决系统发布信息时人工审核成本高的问题&#xff0c;开发一个敏感词检测系统。该系统能够自动检测用户输入的内容中是否包含敏感词&#xff0c;从而减少不合规内容的发布&#xff0c;降低人工审核成本。通过实施这个系统&#xff0c;可以提高信息发布的效率和准确性…

文献速递:肿瘤分割---- 优先注意网络,用于医学图像中多病变分割

文献速递&#xff1a;肿瘤分割---- 优先注意网络&#xff0c;用于医学图像中多病变分割 Title 题目 Prior Attention Network for Multi-Lesion Segmentation in Medical Images 优先注意网络&#xff0c;用于医学图像中多病变分割 Abstract 摘要 —The accurate segmen…

【C++】win11,OpenCV安装教程(VS2022)

1.下载 首先进入官网&#xff0c;下载对应的安装包&#xff0c;苹果系统就选IOS pack&#xff0c;微软系统就选Windows 下载地址&#xff1a;Releases - OpenCV 不方便外网下载的话可以下载我分享的百度网盘资源&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1lV7l…