LRU缓存

        有人从网络读数据,有人从磁盘读数据,机智的人懂得合理利用缓存加速数据的读取效率,提升程序的性能,搏得上司的赏识,赢得白富美的青睐,进一步走向人生巅峰~

LRU假说

        LRU缓存(Least Recently Used Cache)即最近最少使用缓存算法,是一种常用的缓存淘汰策略,它基于这样一个假设:

如果数据最近被访问过,那么它在未来被访问的可能性也更高。

        因此,当缓存空间不足时,LRU缓存会优先移除最长时间未被访问的数据项。        

LRU是怎么干活的

新访问的数据添加到缓存

        当一个数据项被访问时,它会被添加到缓存中。如果该数据项已经在缓存中,它会被更新,并且移动到缓存的最前面,表示最近被访问过。

缓存满时移除最老的数据

        如果缓存已满(达到预设的容量限制),最久未被访问的数据项(位于缓存的最后面)会被移除,以便为新的数据项腾出空间。

维护访问顺序

        缓存需要维护数据项的访问顺序,以便快速确定哪些数据项是最近被访问的,哪些是最久未被访问的。

为了有效地实现LRU缓存,通常需要以下两种数据结构:
        双向链表:用于维护数据项的访问顺序。最近访问的数据项位于链表一头,最久未访问的数据项位于链表另一头。当数据项被访问时,它会被移动到链表最近访问那一头。当需要移除数据项时,最久未访问的末尾数据项会被移除。
        哈希表:用于存储键和指向双向链表中相应节点的指针,以便快速定位缓存中的数据项。这样可以在O(1)时间复杂度内访问缓存项。

LRU的简单示例

如下是一个简单的LRU实现

#include <iostream>
#include <list>
#include <string>
#include <unordered_map>
#include <vector>

using namespace std;

template <typename K, typename V>
class LRUCache {
public:
    LRUCache(int capacity) {
        cap = capacity;
    }

    V get(const K& key) {
        auto it = hash.find(key);
        if (it == hash.end()) {
            return V();
        }

        auto val = it->second->second;
        put(key, val);
        return val;
    }

    void put(const K& key, const V& value) {
        auto it = hash.find(key);
        if (it == hash.end()) {
            if (hash.size() >= cap) {
                auto d_it = data_list.begin();
                auto h_it = d_it->first;
                data_list.erase(d_it);
                hash.erase(h_it);
            }
        } else {
            auto d_it = it->second;
            data_list.erase(d_it);
            hash.erase(it);
        }

        data_list.emplace_back(key, value);
        hash[key] = --data_list.end();
    }

private:
    int cap;
    list<pair<K, V> > data_list;

    using LIST_IT = typename list<pair<K, V> >::iterator;
    unordered_map<K, LIST_IT> hash;
};

int main() {
    LRUCache<int, int> lru(2);

    vector<pair<string, vector<int> > > test_case = {
        {"put", {1, 1}},
        {"put", {2, 2}},
        {"get", {1}},
        {"put", {3, 3}},
        {"get", {2}},
        {"put", {4, 4}},
        {"get", {1}},
        {"get", {3}},
        {"get", {4}},
    };

    for (const auto& [opt, param] : test_case) {
        if (opt == "get") {
            auto val = lru.get(param.front());
            cout << val << endl;
        } else {
            lru.put(param.front(), param.back());
        }
    }

    return 0;
}

运行测试用例可以得到如下结果:

code % g++ lru.cpp -std=c++17
code % ./a.out       
1
0
0
3
4
code % 

        如上,实现一个LRU的代码量并不算多,并且简单易懂,性能也很不错,毕竟时间复杂度为O(1)。但LRU也有其缺点,例如它没有考虑数据的访问频率。这可能会导致一些不经常使用的数据被缓存,而一些经常使用的数据被淘汰

LRU的改进-LFU

        LFU(Least Frequently Used),即最少使用频率缓存,考虑到访问频率,而不是最近一次访问时间。其可以与LRU结合,形成其他变种,以更好地适应不同的数据访问模式。

LFU的简单示例

        例如,可以通过给LRU缓存数据项加上访问频率,当缓存满需要淘汰时,取尾部的数据选一个访问频次最低的来淘汰

#include <iostream>
#include <list>
#include <string>
#include <unordered_map>
#include <vector>

using namespace std;

template <typename K, typename V>
class LRUCache {
public:
    LRUCache(int capacity) {
        cap = capacity;
    }

    V get(const K& key) {
        auto it = hash.find(key);
        if (it == hash.end()) {
            return V();
        }

        const auto& data_tuple = *(it->second);
        auto val = std::get<1>(data_tuple);
        auto cnt = std::get<2>(data_tuple);
        put(key, val, cnt + 1);
        return val;
    }

    void put(const K& key, const V& value, int cnt = 1) {
        auto it = hash.find(key);
        if (it == hash.end()) {
            if (hash.size() >= cap) {
                remove_one_elem();
            }
        } else {
            auto d_it = it->second;
            data_list.erase(d_it);
            hash.erase(it);
        }

        data_list.emplace_back(key, value, cnt);
        hash[key] = --data_list.end();
    }

private:
    void remove_one_elem() {
        auto need_rm = data_list.begin();
        auto it = need_rm;
        for (int i = 1; i < 3 && it != data_list.end(); ++i, ++it) {
            if (std::get<2>(*it) < std::get<2>(*need_rm)) {
                need_rm = it;
            }
        }

        hash.erase(std::get<0>(*need_rm));
        data_list.erase(need_rm);
    }

private:
    int cap;
    list<tuple<K, V, int> > data_list;

    using LIST_IT = typename list<tuple<K, V, int> >::iterator;
    unordered_map<K, LIST_IT> hash;
};

int main() {
    LRUCache<int, int> lru(2);

    vector<pair<string, vector<int> > > test_case = {
        {"put", {1, 1}},
        {"put", {2, 2}},
        {"get", {1}},
        {"put", {3, 3}},
        {"get", {2}},
        {"put", {4, 4}},
        {"get", {1}},
        {"get", {3}},
        {"get", {4}},
    };

    for (const auto& [opt, param] : test_case) {
        if (opt == "get") {
            auto val = lru.get(param.front());
            cout << val << endl;
        } else {
            lru.put(param.front(), param.back());
        }
    }

    return 0;
}

运行测试用例可以得到如下结果:

code % g++ lfu.cpp -std=c++17
code % ./a.out       
1
0
1
0
4
code % 

        与LRU示例的差异点在于,当缓存满时,LFU为从最近未使用的一头,挑选一个访问频次最小的元素进行淘汰。值得注意的是,挑选最少频次并不需要遍历所有的数据,而是针对具体的业务场景,设定一个合适的值即可。

        虽然LRU开销很小,时间复杂度又是O(1),但毕竟每次访问都需要调整链表,对于一些性能要求高的场景,负担还是有点重的,实际的使用场景中,又会根据具体的业务场景,做一些响应的改变。

衍生一下

Clock算法

        Clock算法是一种用于页面置换的缓存淘汰策略,它是LRU算法的一种近似实现,旨在降低实现LRU的开销。Clock算法有时也被称为Second-Chance算法,因为它给了每个页面一个“第二次机会”来避免被置换。

Clock是怎么干活的

        Clock算法维护一个循环链表:所有的页面都被组织成一个循环链表(或称为时钟结构),每个页面都有一个关联的访问位(通常是一个标志位),用于表示该页面自上次检查以来是否被访问过。

        使用指针指向链表中的一个页面:有一个指针(称为时钟指针)指向循环链表中的某个页面。

        维护访问位:当一个页面被访问时,其访问位被设置为1,表示该页面最近被使用过。

        缓存满时检查访问位:当有新需要加载到缓存中,但缓存已满,算法会检查当前时钟指针指向的页面的访问位。如果访问位为1,则将其清零(给予第二次机会),并将时钟指针移动到下一个页面。如果访问位为0,则选择该页面进行置换

        Clock算法的优点是实现简单,开销较低,因为它不需要像真正的LRU算法那样在每次页面访问时都对链表进行调整。它只需要在页面置换时检查和更新访问位。这使得Clock算法特别适合于大规模的缓存系统,如操作系统的页面缓存。

        Clock算法的缺点是它不是完全精确的LRU实现,因为它可能会保留一些不太常用的页面(如果它们在时钟指针到达之前刚好被访问过)。然而,对于许多实际应用来说,Clock算法提供了一个很好的折中方案,既保留了LRU的大部分优点,又显著降低了实现的复杂性和开销。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/373740.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SQL--函数

概念 函数 是指一段可以直接被另一段程序调用的程序或代码。 也就意味着&#xff0c;这一段程序或代码在MySQL中 已经给我们提供了&#xff0c;我们要做的就是在合适的业务场景调用对应的函数完成对应的业务需求即可。 那 么&#xff0c;函数到底在哪儿使用呢&#xff1f; 我…

【Python 实战】---- 实现向指定PDF指定页面指定位置插入图片

1. 需求 想要能否实现批量自动为多个pdf加盖不同六格虚拟章(不改变pdf原有分辨率和文字可识别性);改在pdf首页上方空白位置,一般居中即可;如可由使用者自主选择靠页边距更好,以便部分首页上方有字的文件时人工可微调位置。2. 需求分析 直接将 pdf 文件转换为图片,在将图…

飞天使-k8s知识点12-kubernetes散装知识点1-架构有状态资源对象分类

文章目录 k8s架构图有状态和无状态服务 资源和对象对象规约和状态 资源的对象-资源的分类元数据型与集群型资源命名空间 k8s架构图 有状态和无状态服务 区分有状态和无状态服务有利于维护yaml文件 因为配置不同资源和对象 命令行yaml来定义对象对象规约和状态 规约 spec 描述…

Unity_修改天空球

Unity_修改天空球 Unity循序渐进的深入会发现可以改变的其实很多&#xff0c;剖开代码逻辑&#xff0c;可视化的表现对于吸引客户的眼球是很重要的。尤其对于知之甚少的客户&#xff0c;代码一般很难说服客户&#xff0c;然表现确很容易。 非代码色彩通才&#xff0c;持续学习…

洞悉未来,解锁因果:2023年DataFunSummit因果推断在线峰会全景解读

随着大数据和人工智能的飞速发展&#xff0c;因果推断作为连接数据与决策的桥梁&#xff0c;正日益受到各行业的广泛关注。 在这样的背景下&#xff0c;2023年DataFunSummit因果推断在线峰会如期而至&#xff0c;汇聚了众多业界领袖和专家学者&#xff0c;共同探讨因果推断的最…

【Java从入门到精通】Java注释

Java 注释 在计算机语言中&#xff0c;注释是计算机语言的一个重要组成部分&#xff0c;用于在源代码中解释代码的作用&#xff0c;可以增强程序的可读性&#xff0c;可维护性。 Java 注释是一种在 Java 程序中用于提供代码功能说明的文本。 注释不会被编译器包含在最终的可…

FANUC机器人如何清除示教器右上角的白色感叹号?

FANUC机器人如何清除示教器右上角的白色感叹号&#xff1f; 如下图所示&#xff0c;示教器上显示白色的感叹号&#xff0c;如何清除呢&#xff1f; 具体可参考以下步骤&#xff1a; 按下示教器上白色的“i”键&#xff0c;如下图所示&#xff0c; 如下图所示&#xff0c;按…

Linux截图快捷键以及修改快捷键方式

1. 截图快捷键 初始快捷键如下 全屏截图并保存&#xff1a;AltPrint 选区截图并保存&#xff1a;ShiftPrint 全屏截图并复制到剪贴板&#xff1a;AltCtrlPrint 选区截图并复制到剪贴板&#xff1a;ShiftCtrlPrint 会保存到Pictures文件夹下面 2. 修改快捷键 打开Settings界面…

一文了解 ArrayList 的扩容机制

了解 ArrayList 在 Java 中常用集合类之间的关系如下图所示&#xff1a; 从图中可以看出 ArrayList 是实现了 List 接口&#xff0c;并是一个可扩容数组&#xff08;动态数组&#xff09;&#xff0c;它的内部是基于数组实现的。它的源码定义如下&#xff1a; public class A…

BEV感知算法学习

BEV感知算法学习 3D目标检测系列 Mono3D(Monocular 3D Object Detection for Autonomous Driving) 流程&#xff1a; 通过在地平面上假设先验&#xff0c;在3D空间中对具有典型物理尺寸的候选边界框进行采样&#xff1b;然后我们将这些方框投影到图像平面上&#xff0c;从而避…

Android平台GB28181设备接入模块实现后台service按需回传摄像头数据到国标平台侧

技术背景 我们在做Android平台GB28181设备对接模块的时候&#xff0c;遇到这样的技术需求&#xff0c;开发者希望能以后台服务的形式运行程序&#xff0c;国标平台侧没有视频回传请求的时候&#xff0c;仅保持信令链接&#xff0c;有发起视频回传请求或语音广播时&#xff0c;…

安卓动态链接库文件体积优化探索实践

背景介绍 应用安装包的体积影响着用户下载量、安装时长、用户磁盘占用量等多个方面&#xff0c;据Google Play统计&#xff0c;应用体积每增加6MB&#xff0c;安装的转化率将下降1%。 安装包的体积受诸多方面影响&#xff0c;针对dex、资源文件、so文件都有不同的优化策略&…

TOP100-二叉数

1.94. 二叉树的中序遍历 给定一个二叉树的根节点 root &#xff0c;返回 它的 中序 遍历 。 示例 1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&#xff1a;[1,3,2]示例 2&#xff1a; 输入&#xff1a;root [] 输出&#xff1a;[]示例 3&#xff1a; 输入&#xf…

计算机网络_1.5 计算机网络的性能指标

1.5 计算机网络的性能指标 一、总览二、常用的八个计算机网络性能指标1、速率&#xff08;1&#xff09;数据量&#xff08;2&#xff09;速率&#xff08;3&#xff09;数据量与速率中K、M、G、T的数值辨析&#xff08;4&#xff09;【练习1】计算发送数据块的所需时间 2、带宽…

活锁方案与自旋锁

问题 如何设置获取互斥量时的等待时间&#xff1f; 如果等待超时&#xff0c;如何避免死锁&#xff1f; 避免死锁 -- 设置等待超时 解决方案&#xff1a; 1、尝试获取第 1 个互斥量&#xff1a; 若成功&#xff0c;则转 2 执行&#xff1b;若失败&#xff0c;则等待&#x…

idea开发工具的简单使用与常见问题

1、配置git 选择左上角目录file->setting 打开&#xff0c;Version Control 目录下Git&#xff0c;选择git安装目录下的git.exe文件&#xff1b; 点击test&#xff0c;出现git版本&#xff0c;则表示git识别成功&#xff0c;点击右下角确认即可生效。 2、配置node.js 选…

大创项目推荐 题目:基于深度学习的图像风格迁移 - [ 卷积神经网络 机器视觉 ]

文章目录 0 简介1 VGG网络2 风格迁移3 内容损失4 风格损失5 主代码实现6 迁移模型实现7 效果展示8 最后 0 简介 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于深度学习卷积神经网络的花卉识别 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c…

为什么(如何)从 Java 8/11 迁移到 Java 21,从 Spring Boot 2 迁移到最新的 Spring Boot 3.2 ?

介绍 如果您的工作配置与 Java 有一定的关系&#xff0c;您一定已经注意到 了Java 最新稳定版本 Java 21 引起了很多关注。 这个新版本引入了一些未来的功能&#xff0c;改进了之前引入/孵化的一些突破性功能&#xff0c;弃用了多余的功能&#xff0c;并删除了一些错误。它使…

【工具】Android|Android Studio 长颈鹿版本安装下载使用详解

版本&#xff1a;2022.3.1.22&#xff0c; https://redirector.gvt1.com/edgedl/android/studio/install/2022.3.1.22/android-studio-2022.3.1.22-windows.exe 前言 笔者曾多次安装并卸载Android Studio&#xff0c;反复被安卓模拟器劝退。现在差不多是第三次安装&#xff0c…

【Java八股面试系列】JVM-垃圾回收

目录 垃圾回收 堆空间的基本结构 内存分配和回收原则 分代收集机制 Minor GC 流程 空间分配担保 老年代 大对象直接进入老年代 长期存活的对象将进入老年代 GC的区域 对象存活判定算法 引用计数法 可达性分析算法 finalize() 字符串常量判活 类判活 垃圾回收算…