【数据结构与算法】(11)基础数据结构 之 二叉树 二叉树的存储与遍历及相关示例 详细代码讲解

目录

    • 2.10 二叉树
      • 1) 存储
      • 2) 遍历
        • 广度优先
        • 深度优先
        • 递归实现
        • 非递归实现
      • 习题
        • E01. 前序遍历二叉树-Leetcode 144
        • E02. 中序遍历二叉树-Leetcode 94
        • E03. 后序遍历二叉树-Leetcode 145
        • E04. 对称二叉树-Leetcode 101
        • E05. 二叉树最大深度-Leetcode 104
        • E06. 二叉树最小深度-Leetcode 111
        • E07. 翻转二叉树-Leetcode 226
        • E08. 后缀表达式转二叉树
        • E09. 根据前序与中序遍历结果构造二叉树-Leetcode 105
        • E10. 根据中序与后序遍历结果构造二叉树-Leetcode 106

在这里插入图片描述

2.10 二叉树

二叉树是这么一种树状结构:每个节点最多有两个孩子,左孩子和右孩子

重要的二叉树结构

  • 完全二叉树(complete binary tree)是一种二叉树结构,除最后一层以外,每一层都必须填满,填充时要遵从先左后右
  • 平衡二叉树(balance binary tree)是一种二叉树结构,其中每个节点的左右子树高度相差不超过 1

1) 存储

存储方式分为两种

  1. 定义树节点与左、右孩子引用(TreeNode)
  2. 使用数组,前面讲堆时用过,若以 0 作为树的根,索引可以通过如下方式计算
    • 父 = floor((子 - 1) / 2)
    • 左孩子 = 父 * 2 + 1
    • 右孩子 = 父 * 2 + 2

2) 遍历

遍历也分为两种

  1. 广度优先遍历(Breadth-first order):尽可能先访问距离根最近的节点,也称为层序遍历
  2. 深度优先遍历(Depth-first order):对于二叉树,可以进一步分成三种(要深入到叶子节点)
    1. pre-order 前序遍历,对于每一棵子树,先访问该节点,然后是左子树,最后是右子树
    2. in-order 中序遍历,对于每一棵子树,先访问左子树,然后是该节点,最后是右子树
    3. post-order 后序遍历,对于每一棵子树,先访问左子树,然后是右子树,最后是该节点
广度优先

在这里插入图片描述

本轮开始时队列本轮访问节点
[1]1
[2, 3]2
[3, 4]3
[4, 5, 6]4
[5, 6]5
[6, 7, 8]6
[7, 8]7
[8]8
[]
  1. 初始化,将根节点加入队列
  2. 循环处理队列中每个节点,直至队列为空
  3. 每次循环内处理节点后,将它的孩子节点(即下一层的节点)加入队列

注意

  • 以上用队列来层序遍历是针对 TreeNode 这种方式表示的二叉树

  • 对于数组表现的二叉树,则直接遍历数组即可,自然为层序遍历的顺序

深度优先

在这里插入图片描述

栈暂存已处理前序遍历中序遍历
[1]1 ✔️ 左💤 右💤1
[1, 2]2✔️ 左💤 右💤
1✔️ 左💤 右💤
2
[1, 2, 4]4✔️ 左✔️ 右✔️
2✔️ 左💤 右💤
1✔️ 左💤 右💤
44
[1, 2]2✔️ 左✔️ 右✔️
1✔️ 左💤 右💤
2
[1]1✔️ 左✔️ 右💤1
[1, 3]3✔️ 左💤 右💤
1✔️ 左✔️ 右💤
3
[1, 3, 5]5✔️ 左✔️ 右✔️
3✔️ 左💤 右💤
1✔️ 左✔️ 右💤
55
[1, 3]3✔️ 左✔️ 右💤
1✔️ 左✔️ 右💤
3
[1, 3, 6]6✔️ 左✔️ 右✔️
3✔️ 左✔️ 右💤
1✔️ 左✔️ 右💤
66
[1, 3]3✔️ 左✔️ 右✔️
1✔️ 左✔️ 右💤
[1]1✔️ 左✔️ 右✔️
[]
递归实现
/**
 * <h3>前序遍历</h3>
 * @param node 节点
 */
static void preOrder(TreeNode node) {
    if (node == null) {
        return;
    }
    System.out.print(node.val + "\t"); // 值
    preOrder(node.left); // 左
    preOrder(node.right); // 右
}

/**
 * <h3>中序遍历</h3>
 * @param node 节点
 */
static void inOrder(TreeNode node) {
    if (node == null) {
        return;
    }
    inOrder(node.left); // 左
    System.out.print(node.val + "\t"); // 值
    inOrder(node.right); // 右
}

/**
 * <h3>后序遍历</h3>
 * @param node 节点
 */
static void postOrder(TreeNode node) {
    if (node == null) {
        return;
    }
    postOrder(node.left); // 左
    postOrder(node.right); // 右
    System.out.print(node.val + "\t"); // 值
}
非递归实现

前序遍历

LinkedListStack<TreeNode> stack = new LinkedListStack<>();
TreeNode curr = root;

while (!stack.isEmpty() || curr != null) {
    if (curr != null) {
        stack.push(curr);
        System.out.println(curr);
        curr = curr.left;
    } else {
        TreeNode pop = stack.pop();
        curr = pop.right;
    }

}

中序遍历

LinkedListStack<TreeNode> stack = new LinkedListStack<>();
TreeNode curr = root;

while (!stack.isEmpty() || curr != null) {
    if (curr != null) {
        stack.push(curr);
        curr = curr.left;
    } else {
        TreeNode pop = stack.pop();
        System.out.println(pop);
        curr = pop.right;
    }
}

后序遍历

LinkedListStack<TreeNode> stack = new LinkedListStack<>();
TreeNode curr = root;
TreeNode pop = null;

while (!stack.isEmpty() || curr != null) {
    if (curr != null) {
        stack.push(curr);
        curr = curr.left;
    } else {
        TreeNode peek = stack.peek();
        if (peek.right == null || peek.right == pop) {
            pop = stack.pop();
            System.out.println(pop);
        } else {
            curr = peek.right;
        }
    }
}

对于后序遍历,向回走时,需要处理完右子树才能 pop 出栈。如何知道右子树处理完成呢?

  • 如果栈顶元素的 r i g h t ≡ n u l l right \equiv null rightnull 表示没啥可处理的,可以出栈

  • 如果栈顶元素的 r i g h t ≠ n u l l right \neq null right=null

    • 那么使用 lastPop 记录最近出栈的节点,即表示从这个节点向回走
    • 如果栈顶元素的 r i g h t = = l a s t P o p right==lastPop right==lastPop 此时应当出栈

对于前、中两种遍历,实际以上代码从右子树向回走时,并未走完全程(stack 提前出栈了)后序遍历以上代码是走完全程了

统一写法

下面是一种统一的写法,依据后序遍历修改

LinkedList<TreeNode> stack = new LinkedList<>();

TreeNode curr = root; // 代表当前节点
TreeNode pop = null; // 最近一次弹栈的元素
while (curr != null || !stack.isEmpty()) {
    if (curr != null) {
        colorPrintln("前: " + curr.val, 31);
        stack.push(curr); // 压入栈,为了记住回来的路
        curr = curr.left;
    } else {
        TreeNode peek = stack.peek();
        // 右子树可以不处理, 对中序来说, 要在右子树处理之前打印
        if (peek.right == null) {
            colorPrintln("中: " + peek.val, 36);
            pop = stack.pop();
            colorPrintln("后: " + pop.val, 34);
        }
        // 右子树处理完成, 对中序来说, 无需打印
        else if (peek.right == pop) {
            pop = stack.pop();
            colorPrintln("后: " + pop.val, 34);
        }
        // 右子树待处理, 对中序来说, 要在右子树处理之前打印
        else {
            colorPrintln("中: " + peek.val, 36);
            curr = peek.right;
        }
    }
}

public static void colorPrintln(String origin, int color) {
    System.out.printf("\033[%dm%s\033[0m%n", color, origin);
}

一张图演示三种遍历

在这里插入图片描述

  • 红色:前序遍历顺序
  • 绿色:中序遍历顺序
  • 蓝色:后续遍历顺序

习题

E01. 前序遍历二叉树-Leetcode 144
E02. 中序遍历二叉树-Leetcode 94
E03. 后序遍历二叉树-Leetcode 145
E04. 对称二叉树-Leetcode 101
public boolean isSymmetric(TreeNode root) {
    return check(root.left, root.right);
}

public boolean check(TreeNode left, TreeNode right) {
    // 若同时为 null
    if (left == null && right == null) {
        return true;
    }
    // 若有一个为 null (有上一轮筛选,另一个肯定不为 null)
    if (left == null || right == null) {
        return false;
    }
    if (left.val != right.val) {
        return false;
    }
    return check(left.left, right.right) && check(left.right, right.left);
}

类似题目:Leetcode 100 题 - 相同的树

E05. 二叉树最大深度-Leetcode 104

后序遍历求解

/*
    思路:
    1. 得到左子树深度, 得到右子树深度, 二者最大者加一, 就是本节点深度
    2. 因为需要先得到左右子树深度, 很显然是后序遍历典型应用
    3. 关于深度的定义:从根出发, 离根最远的节点总边数,
        注意: 力扣里的深度定义要多一

        深度2         深度3         深度1
        1            1            1
       / \          / \
      2   3        2   3
                        \
                         4
 */
public int maxDepth(TreeNode node) {
    if (node == null) {
        return 0; // 非力扣题目改为返回 -1
    }
    int d1 = maxDepth(node.left);
    int d2 = maxDepth(node.right);
    return Integer.max(d1, d2) + 1;
}

后序遍历求解-非递归

/*
    思路:
    1. 使用非递归后序遍历, 栈的最大高度即为最大深度
 */
public int maxDepth(TreeNode root) {
    TreeNode curr = root;
    LinkedList<TreeNode> stack = new LinkedList<>();
    int max = 0;
    TreeNode pop = null;
    while (curr != null || !stack.isEmpty()) {
        if (curr != null) {
            stack.push(curr);
            int size = stack.size();
            if (size > max) {
                max = size;
            }
            curr = curr.left;
        } else {
            TreeNode peek = stack.peek();
            if(peek.right == null || peek.right == pop) {
                pop = stack.pop();
            } else {
                curr = peek.right;
            }
        }
    }
    return max;
}

层序遍历求解

/*
    思路:
    1. 使用层序遍历, 层数即最大深度
 */
public int maxDepth(TreeNode root) {
    if(root == null) {
        return 0;
    }
    Queue<TreeNode> queue = new LinkedList<>();
    queue.offer(root);
    int level = 0;
    while (!queue.isEmpty()) {
        level++;
        int size = queue.size();
        for (int i = 0; i < size; i++) {
            TreeNode node = queue.poll();
            if (node.left != null) {
                queue.offer(node.left);
            }
            if (node.right != null) {
                queue.offer(node.right);
            }
        }
    }
    return level;
}
E06. 二叉树最小深度-Leetcode 111

后序遍历求解

public int minDepth(TreeNode node) {
    if (node == null) {
        return 0;
    }
    int d1 = minDepth(node.left);
    int d2 = minDepth(node.right);
    if (d1 == 0 || d2 == 0) {
        return d1 + d2 + 1;
    }
    return Integer.min(d1, d2) + 1;
}

相较于求最大深度,应当考虑:

  • 当右子树为 null,应当返回左子树深度加一
  • 当左子树为 null,应当返回右子树深度加一

上面两种情况满足时,不应该再把为 null 子树的深度 0 参与最小值比较,例如这样

    1
   /
  2
  • 正确深度为 2,若把为 null 的右子树的深度 0 考虑进来,会得到错误结果 1
    1
     \
      3
       \
        4
  • 正确深度为 3,若把为 null 的左子树的深度 0 考虑进来,会得到错误结果 1

层序遍历求解

遇到的第一个叶子节点所在层就是最小深度

例如,下面的树遇到的第一个叶子节点 3 所在的层就是最小深度,其他 4,7 等叶子节点深度更深,也更晚遇到

     1
    / \     
   2   3
  / \
 4   5 
    /
   7 

代码

public int minDepth(TreeNode root) {
    if(root == null) {
        return 0;
    }
    Queue<TreeNode> queue = new LinkedList<>();
    queue.offer(root);
    int level = 0;
    while (!queue.isEmpty()) {
        level++;
        int size = queue.size();
        for (int i = 0; i < size; i++) {
            TreeNode node = queue.poll();
            if (node.left == null && node.right == null) {
                return level;
            }
            if (node.left != null) {
                queue.offer(node.left);
            }
            if (node.right != null) {
                queue.offer(node.right);
            }
        }
    }
    return level;
}

效率会高于之前后序遍历解法,因为找到第一个叶子节点后,就无需后续的层序遍历了

E07. 翻转二叉树-Leetcode 226
public TreeNode invertTree(TreeNode root) {
    fn(root);
    return root;
}

private void fn(TreeNode node){
    if (node == null) {
        return;
    }
    TreeNode t = node.left;
    node.left = node.right;
    node.right = t;
    fn(node.left);
    fn(node.right);
}

先交换、再递归或是先递归、再交换都可以

E08. 后缀表达式转二叉树
static class TreeNode {
    public String val;
    public TreeNode left;
    public TreeNode right;

    public TreeNode(String val) {
        this.val = val;
    }

    public TreeNode(TreeNode left, String val, TreeNode right) {
        this.left = left;
        this.val = val;
        this.right = right;
    }

    @Override
    public String toString() {
        return this.val;
    }
}

/*
    中缀表达式           (2-1)*3
    后缀(逆波兰)表达式   21-3*

    1.遇到数字入栈
    2.遇到运算符, 出栈两次, 与当前节点建立父子关系, 当前节点入栈

    栈
    |   |
    |   |
    |   |
    _____

    表达式树
        *
       / \
      -   3
     / \
    2   1

    21-3*
 */
public TreeNode constructExpressionTree(String[] tokens) {
    LinkedList<TreeNode> stack = new LinkedList<>();
    for (String t : tokens) {
        switch (t) {
            case "+", "-", "*", "/" -> { // 运算符
                TreeNode right = stack.pop();
                TreeNode left = stack.pop();
                TreeNode parent = new TreeNode(t);
                parent.left = left;
                parent.right = right;
                stack.push(parent);
            }
            default -> { // 数字
                stack.push(new TreeNode(t));
            }
        }
    }
    return stack.peek();
}
E09. 根据前序与中序遍历结果构造二叉树-Leetcode 105
  • 先通过前序遍历结果定位根节点
  • 再结合中序遍历结果切分左右子树
public class E09Leetcode105 {

    /*
        preOrder = {1,2,4,3,6,7}
        inOrder = {4,2,1,6,3,7}

        根 1
            pre         in
        左  2,4         4,2
        右  3,6,7       6,3,7


        根 2
        左 4

        根 3
        左 6
        右 7
     */

    public TreeNode buildTree(int[] preOrder, int[] inOrder) {
        if (preOrder.length == 0) {
            return null;
        }
        // 创建根节点
        int rootValue = preOrder[0];
        TreeNode root = new TreeNode(rootValue);
        // 区分左右子树
        for (int i = 0; i < inOrder.length; i++) {
            if (inOrder[i] == rootValue) {
                // 0 ~ i-1 左子树
                // i+1 ~ inOrder.length -1 右子树
                int[] inLeft = Arrays.copyOfRange(inOrder, 0, i); // [4,2]
                int[] inRight = Arrays.copyOfRange(inOrder, i + 1, inOrder.length); // [6,3,7]

                int[] preLeft = Arrays.copyOfRange(preOrder, 1, i + 1); // [2,4]
                int[] preRight = Arrays.copyOfRange(preOrder, i + 1, inOrder.length); // [3,6,7]

                root.left = buildTree(preLeft, inLeft); // 2
                root.right = buildTree(preRight, inRight); // 3
                break;
            }
        }
        return root;
    }

}
  • 代码可以进一步优化,涉及新数据结构,以后实现
E10. 根据中序与后序遍历结果构造二叉树-Leetcode 106
  • 先通过后序遍历结果定位根节点
  • 再结合中序遍历结果切分左右子树
public TreeNode buildTree(int[] inOrder, int[] postOrder) {
    if (inOrder.length == 0) {
        return null;
    }
    // 根
    int rootValue = postOrder[postOrder.length - 1];
    TreeNode root = new TreeNode(rootValue);
    // 切分左右子树
    for (int i = 0; i < inOrder.length; i++) {
        if (inOrder[i] == rootValue) {
            int[] inLeft = Arrays.copyOfRange(inOrder, 0, i);
            int[] inRight = Arrays.copyOfRange(inOrder, i + 1, inOrder.length);

            int[] postLeft = Arrays.copyOfRange(postOrder, 0, i);
            int[] postRight = Arrays.copyOfRange(postOrder, i, postOrder.length - 1);

            root.left = buildTree(inLeft, postLeft);
            root.right = buildTree(inRight, postRight);
            break;
        }
    }
    return root;
}
  • 代码可以进一步优化,涉及新数据结构,以后实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/373662.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

R语言:箱线图绘制(添加平均值趋势线)

箱线图绘制 1. 写在前面2.箱线图绘制2.1 相关R包导入2.2 数据导入及格式转换2.3 ggplot绘图 1. 写在前面 今天有时间把之前使用过的一些代码和大家分享&#xff0c;其中箱线图绘制我认为是非常有用的一个部分。之前我是比较喜欢使用origin进行绘图&#xff0c;但是绘制的图不太…

C++杂选

#include <iostream> #include <regex>using namespace std;int main() { //它声明了一个 string 类型的变量 input&#xff0c;用于存储输入的字符串。然后使用 getline() 函数从标准输入中读取一行输入&#xff0c;并将其存储在 input 变量中。string input;getl…

PAT-Apat甲级题1008(python和c++实现)

PTA | 1008 Elevator 1008 Elevator 作者 CHEN, Yue 单位 浙江大学 The highest building in our city has only one elevator. A request list is made up with N positive numbers. The numbers denote at which floors the elevator will stop, in specified order. It …

c#读取csv文件中的某一列的数据

chat8 (chat779.com) 上面试GPT-3.5,很好的浏览网站&#xff0c;输入问题&#xff0c;可得到答案。 问题1&#xff1a;c#如何在csv中读取某一列数据 解答方案&#xff1a;在 C#中&#xff0c;你可以使用File.ReadAllLines来读取CSV中的所有行&#xff0c;然后逐行解析每一行…

机器学习---概率图模型(隐马尔可夫模型、马尔可夫随机场、条件随机场)

1. 隐马尔可夫模型 机器学习最重要的任务是根据已观察到的证据&#xff08;例如训练样本&#xff09;对感兴趣的未知变量&#xff08;例如类别标 记&#xff09;进行估计和推测。概率模型&#xff08;probabilistic model&#xff09;提供了一种描述框架&#xff0c;将描述任…

网络选择流程分析(首选网络类型切换流程)

首先是界面,我在此平台的界面如下: 对应的入口源码位置在Settings的UniEnabledNetworkModePreferenceController中,当然其他平台可能在PreferredNetworkModePreferenceController中,流程上都是大同小异 然后点击切换按钮会调用到UniEnabledNetworkModePreferenceControlle…

智算中心建设主流加速卡选型策略

智算中心建设主流加速卡选型对比 —— 加速卡H800、A800、L40S、***B 一、加速卡基本性能比较 序号比较项H800A800L40S某国产NPU&#xff08;本文简称“nB”&#xff09; 1 加速卡类型 GPU GPU GPU NPU 2 供应商 英伟达 英伟达 英伟达 - 3 FP32&#xff08;TFLO…

MySQL查询优化技巧和10个案例展示

优化MySQL查询的实战技巧&#xff1a; **避免使用SELECT ***&#xff1a;只获取需要的列&#xff0c;这样可以减少数据传输量&#xff0c;提高查询效率。使用索引&#xff1a;为查询频繁的列创建索引&#xff0c;可以显著提高查询速度。但请注意&#xff0c;索引并非万能&…

Android中设置Toast.setGravity()了后没有效果

当设置 toast.setGravity()后&#xff0c;弹窗依旧从原来的位置弹出&#xff0c;不按设置方向弹出 类似以下代码&#xff1a; var toast Toast.makeText(this, R.string.ture_toast, Toast.LENGTH_SHORT)toast.setGravity(Gravity.TOP, 0, 0)//设置toast的弹出方向为屏幕顶部…

绕过安全狗

本节我们想要绕过的安全狗版本为v4.023957 &#xff0c;它是网站安全狗的Apache版。 首先搭建环境。渗透环境选用DVWA漏洞集成环境&#xff0c;下载地址 为http://www.dvwa.co.uk/ 。DVWA是一款集成的渗透测试演练环境&#xff0c;当刚刚入门 并且找不到合适的靶机时&#xff…

Bytebase 签约 Vianova,助力欧洲城市交通智能平台中 Snowflake 和 PG 的变更自动化及版本控制

在数字化发展的浪潮中&#xff0c;自动化数据库变更管理成为提升产品上线效率、降低人为失误风险的关键工具&#xff0c;同时促进流程的一致性与标准化&#xff0c;确保合规性和变更的可追溯性。近日&#xff0c;数据库 DevOps 团队协同管理工具 Bytebase 签约欧洲交通数据管理…

H12-821_134

134.如图所示&#xff0c;RED在入方向调用了ip as-path-filter1&#xff0c;那么路由10.0.0.0/24会从路径_________被RE_D学习。(请填写1或2) 答案&#xff1a;1 注释&#xff1a; ip as-path-filter 1解释&#xff1a; ip as-path-filter 1 deny _300$ 拒绝AS300始发的路由&…

图像异或加密、解密的实现

很多论文提到了从左上角开始做异或,逐行推导得到结果。 解密过程是加密的逆过程。 先看其基本方法: 参考文献: A Chaotic System Based Image Encryption Scheme with Identical Encryption and Decryption Algorithm 大多数论文都用了这个思路,我们使用MATLAB实现代码…

ASUS华硕灵耀X双屏UX8402V工厂模式原厂Win11.22H2系统安装包,含WinRE恢复出厂时开箱状态自带预装OEM系统

适用型号&#xff1a;UX8402VV、UX8402VU 链接&#xff1a;https://pan.baidu.com/s/1D7tJshKTNFYO4YyzKX0ppQ?pwd3saf 提取码&#xff1a;3saf Zenbook Pro灵耀X笔记本电脑原装出厂Windows11系统 带有ASUS RECOVERY恢复功能、自带面部识别&#xff0c;声卡&#xff0c;网…

PySpark(四)PySpark SQL、Catalyst优化器、Spark SQL的执行流程

目录 PySpark SQL 基础 SparkSession对象 DataFrame入门 DataFrame构建 DataFrame代码风格 DSL SQL SparkSQL Shuffle 分区数目 DataFrame数据写出 Spark UDF Catalyst优化器 Spark SQL的执行流程 PySpark SQL 基础 PySpark SQL与Hive的异同 Hive和Spark 均是:“分…

SpringBoot-基础篇03

之前搭建了整个开发环境实现了登录注册&#xff0c;springBoot整合mybatis完成增删改查&#xff0c;今天完成分页查询&#xff0c;使用阿里云oss存储照片等资源&#xff0c;后期会尝试自己搭建分布式文件系统来实现。 一&#xff0c;SpringBootMybatis完成分页查询 1&#xff…

计算机项目SpringBoot项目 办公小程序开发

从零构建后端项目、利用UNI-APP创建移动端项目 实现注册与登陆、人脸考勤签到、实现系统通知模块 实现会议管理功能、完成在线视频会议功能、 发布Emos在线办公系统 项目分享&#xff1a; SpringBoot项目 办公小程序开发https://pan.baidu.com/s/1sYPLOAMtaopJCFHAWDa2xQ?…

幻兽帕鲁mac可以玩吗?

《幻兽帕鲁》&#xff08;英文&#xff1a;Palworld&#xff09;是一款近期在 Steam 爆红的动作冒险生存游戏&#xff0c;游戏设置在一个居住着「帕鲁」的开放世界中&#xff0c;玩家可以战斗并捕捉帕鲁&#xff0c;也能用它们来建造基地、骑乘和战斗。 不过目前《幻兽帕鲁》仅…

基于CEVA DSP BX2的架构分析(五)- 标量处理单元(二)

目录 5.3.5 结果饱和度 5.3.4 乘法饱和度 5.3.5 乘法后移位 5.3.6 标量浮点支持 5.3.7 复数支持 5.3.7.1 ​​​​​​​​​​​​​​16位复杂算法支持 ​​​​​​​5.3.7.2 32位复杂算法支持 5.4 SPU算术标志 ​​​​​​​5.4.1 进位标志 ​​​​​​​5.4.2 溢出标志 …

docker部署docker管理工具easydockerweb

重要提示 功能比较少,建议体验一下即可 安装 docker run -it -d -p 10041:3000 -e EDW_USERNAMEadmin -e EDW_PASSWORDadmin -v /var/run/docker.sock:/var/run/docker.sock qfdk/easydockerweb 使用 概览 镜像管理 容器管理