【高质量精品】2024美赛B题22页word版高质量半成品论文+多版保奖思路+数据+前四问思路代码等(后续会更新)

一定要点击文末的卡片,进入后,获取完整论文!!

B 题整体模型构建

1.   潜水器动力系统失效:模型需要考虑潜水器在无推进力情况下的行为。

2.   失去与主船通信:考虑无法从主船接收指令或发送位置信息的情况。

3.   中性浮力和海底定位:潜水器可能位于海底或达到水下某个中性浮力点。 4.   水流和海水密度变化:影响潜水器位置的环境因素。

5.   海底地理:海底的地形可能会影响潜水器的最终位置或移动路径。

数学模型和公式

为预测潜水器的位置,我们可以建立基于物理学原理的动态模型,考虑力学和流体动力 学的因素。以下是潜水器运动的基本方程:

动力学方程

设潜水器的质量为 mm   ,受到的浮力为 FbF_b   ,重力为 FgF_g   ,水流对潜水器施加 的力为 FcF_c   ,潜水器在水中的阻力为 F_d ,则潜水器的运动方程可表示为:

md2r→dt2=Fb→+Fg→+Fc→− Fd→ m\frac{d^2\vec{r}}{dt^2} = \vec{F_b} + \vec{F_g} + \vec{F_c} - \vec{F_d}

其中, r →\vec{r}  是潜水器的位置向量, tt   是时间。

mm  :潜水器的质量

Fb→\vec{F_b}  :浮力,方向向上

Fg→=m ⋅ g\vec{F_g} = m \cdot g  :重力,方向向下, gg  是重力加速度

Fc→\vec{F_c}  :水流对潜水器的作用力,方向依赖于水流方向

Fd→\vec{F_d}  :阻力,方向与潜水器运动方向相反,大小可以用 Fd=12ρv2CdAF_d =

\frac{1}{2} \rho v^2 C_d A  来估计,其中 ρ\rho  是水的密度, vv  是潜水器相对于水的速 度, CdC_d  是阻力系数,$A$  是潜水器迎水面积

潜水器浮力和阻力的计算

浮力 FbF_b  可以通过潜水器排水量和水的密度来计算,阻力 FdF_d  可以根据潜水器的 形状、表面粗糙度和运动速度来估算。

数值解法

 潜水器的运动方程是一个二阶微分方程,我们可以采 用数值方法(如欧拉方法或龙格-库塔方法)对其进行求解,得到潜水器随时间变化的 位置和速度。

模型假设

. 潜水器被视为质点,忽略其尺寸和形状的影响。

. 假设水流速度和方向是已知的,可以从海洋流动模型获得。

. 海底地形对潜水器运动的影响通过调整浮力和阻力参数来模拟。

通过上述模型和方法,我们可以预测在不同情况下潜水器的位置,为 MCMS 制定安全程 序提供科学依据。

为了解决上述复杂的数学建模问题,我们将问题分解为四个主要部分:定位、准备、搜 索和外推。下面是针对每个部分的详细分析和数学模型。

定位

模型构建

. 基于多传感器融合的动态预测模型:利用卡尔曼滤波(Kalman Filter)或扩展卡尔曼滤波 (Extended Kalman Filter, EKF)来整合来自潜水器内部(如 IMU 传感器)和外部(如声纳、 GPS 浮标)的多源信息,预测潜水器随时间变化的位置。

数学公式

假设潜水器的状态为 x →t= [xt,yt,zt,x˙t,y˙t,z˙t]T\vec{x}_t = [x_t, y_t, z_t, \dot{x}_t, \dot{y}_t, \dot{z}_t]^T  ,

其中 xt,yt,ztx_t, y_t, z_t  表示潜水器在三维空间中的位置,

x˙t,y˙t,z˙t\dot{x}_t, \dot{y}_t, \dot{z}_t  表示对应的速度。

卡尔曼滤波的预测和更新步骤如下:

. 预测步骤: x →t |t− 1=F →tx→t− 1 |t− 1+B→tu→t \vec{x}_{t |t- 1} = \vec{F}_t \vec{x}_{t- 1 |t- 1} + \vec{B}_t    \vec{u}_t      P →t |t− 1=F →tP→t− 1 |t− 1F→tT+Q→t    \vec{P}_{t |t- 1}     =    \vec{F}_t \vec{P}_{t- 1 |t- 1} \vec{F}_t^T + \vec{Q}_t

. 更新步骤:  K →t=P →t |t− 1H→tT(H→tP→t |t− 1H→tT+R→t)−1 \vec{K}_t  = \vec{P}_{t|t- 1} \vec{H}_t^T            (\vec{H}_t            \vec{P}_{t |t- 1}             \vec{H}_t^T            +            \vec{R}_t)^{- 1} x →t |t=x →t |t− 1+K→t(z →t− H →tx→t |t− 1)   \vec{x}_{t |t}    =     \vec{x}_{t |t- 1}     +     \vec{K}_t (\vec{z}_t - \vec{H}_t \vec{x}_{t |t- 1}) P→t |t=(I− K →tH→t)P→t |t− 1 \vec{P}_{t |t} = (I - \vec{K}_t \vec{H}_t) \vec{P}_{t |t- 1}

其中, F →t\vec{F}_t  是状态转移矩阵, B →t\vec{B}_t  是控制输入矩阵, u →t\vec{u}_t  是外部控制输入,P →t\vec{P}_t  是估计误差协方差,Q→t\vec{Q}_t  是过程噪声协方差, H →t\vec{H}_t  是观测模型矩阵, R →t\vec{R}_t  是观测噪声协方差, K →t\vec{K}_t  是卡 尔曼增益, z →t\vec{z}_t  是实际观测值。

不确定性分析

. 主要的不确定性来源包括传感器噪声、模型误差、外部环境(如水流变化和海底地形)的未 知性。蒙特卡洛模拟(Monte Carlo Simulation)可用于评估这些不确定性对预测准确性的影 响。

一定要点击文末的卡片,进入后,获取完整论文!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/372039.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯Web应用开发-display属性

display 属性 专栏持续更新中 display 属性可以用来设置元素在页面上的排列方式,也可用来隐藏元素。 display 属性值的说明如下表所示。 属性值说明block元素以块级方式展示。inline元素以内联方式展示。inline-block元素以内联块的方式展示。none隐藏元素。 b…

【微机原理与单片机接口技术】MCS-51单片机的引脚功能介绍

前言 MCS-51是指由美国Intel公司生产的一系列单片机的总称。MCS-51系列单片机型号有很多,按功能分位基本型和增强型两大类,分别称为8051系列单片机和8052系列单片机,两者以芯片型号中的末位数字区分,1为基本型,2为增强…

Python算法题集_反转链表

Python算法题集_反转链表 题41:反转链表1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【列表反转】2) 改进版一【直接赋值】3) 改进版二【递归大法】 4. 最优算法 本文为Python算法题集之一的代码示例 题41:反转链表 …

C#监听QQ消息自动回复-QQ自动化

整理 | 小耕家的喵大仙 出品 | CSDN(ID:lichao19897314) Q Q | 978124155 关于项目背景和微信自动化学习介绍 因为前面写了很多关于微信自动化的文章,网上有一位网友说他是做培训行业的,有时候除了微信对接客户还需要…

druid配置wall导致无法批量sql

1、现象 2、原配置 spring:autoconfigure:exclude: com.alibaba.druid.spring.boot.autoconfigure.DruidDataSourceAutoConfiguredatasource:druid:stat-view-servlet:enabled: trueloginUsername: ***loginPassword: ***allow:web-stat-filter:enabled: truedynamic:druid: #…

kakfa系统架构

消息队列Kafka系统架构 Q:什么是Kafka? A:Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息引擎、消息队列服务,它可以处理消费者规模的网站中的所有动作流数据。…

【GameFramework框架】三、快速启动

推荐阅读 CSDN主页GitHub开源地址Unity3D插件分享简书地址 大家好,我是佛系工程师☆恬静的小魔龙☆,不定时更新Unity开发技巧,觉得有用记得一键三连哦。 一、前言 【GameFramework框架】系列教程目录: https://blog.csdn.net/q7…

python常用pandas函数nlargest / nsmallest及其手动实现

目录 pandas库 Series和DataFrame nlargest和nsmallest 用法示例 代替方法 手动实现 模拟代码 pandas库 是Python中一个非常强大的数据处理库,提供了高效的数据分析方法和数据结构。它特别适用于处理具有关系型数据或带标签数据的情况,同时在时间…

动态库是怎么被加载的?

目录 1.动态库是如何被加载的? 2.那么虚拟地址和物理地址是如何映射的呢? 3.那么动态库的地址怎么来? 1.动态库是如何被加载的? 下面这个就是正常的进程是如何从磁盘中读取信息编译的: 而动态库就存储在共享区段&am…

Android简单支持项目符号的EditText

一、背景及样式效果 因项目需要,需要文本编辑时,支持项目符号(无序列表)尝试了BulletSpan,但不是很理想,并且考虑到影响老版本回显等因素,最终决定自定义一个BulletEditText。 先看效果&…

新春营销不间断,AI 整活更省心

新年、春节历来都是营销的大热节点,各种好物集、年货节、送礼清单比比皆是。这些新鲜玩法的背后是大量的品牌内容「弹药库」。 然而,品牌想在竞争激烈的新春季刷满存在感,并非易事。一方面,节日期间,消费者对于内容的审…

交叉验证之KFold和StratifiedKFold的使用(附案例实战)

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…

云计算、Docker、K8S问题

1 云计算 云计算作为一种新兴技术,已经在现代社会中得到了广泛应用。它以其高效、灵活和可扩展特性,成为了许多企业和组织在数据处理和存储方面的首选方案。 1.1 什么是云计算?它有哪些特点? 云计算是一种通过网络提供计算资源…

项目02《游戏-06-开发》Unity3D

基于 项目02《游戏-05-开发》Unity3D , 接下来做 背包系统的 存储框架 , 首先了解静态数据 与 动态数据,静态代表不变的数据,比如下图武器Icon, 其中,武器的名称,描述&#xff…

全网第一篇把Nacos配置中心客户端讲明白的

入口 我们依旧拿ConfigExample作为入口 public class ConfigExample {public static void main(String[] args) throws NacosException, InterruptedException {String serverAddr "localhost";String dataId "test";String group "DEFAULT_GROU…

搭建frp

1.frp 是什么? frp 是一款高性能的反向代理应用,专注于内网穿透。它支持多种协议,包括 TCP、UDP、HTTP、HTTPS 等,并且具备 P2P 通信功能。使用 frp,您可以安全、便捷地将内网服务暴露到公网,通过拥有公网…

解决nvrtc: error: invalid value for --gpu-architecture (-arch)

问题描述 在使用pytorch3d的时候,可以正常的import,但是在执行错误的使用就会报,nvrtc: error: invalid value for --gpu-architecture (-arch),的错误,图片如下: 我的环境是: 显卡&#xff1…

精细管理药厂设备,制药机械设备管理平台系统助力生产提效

制药行业的复杂性要求对药品的品质和安全性进行严格控制,而这离不开高效管理各类机械设备。然而,随着制药企业规模的不断扩大和技术的迅猛进步,如何有效管理这些设备成为一个亟待解决的问题。在这一挑战面前,PreMaint制药机械设备…

Antd+React+react-resizable实现表格拖拽功能

1、先看效果 2、环境准备 "dependencies": {"antd": "^5.4.0","react-resizable": "^3.0.4",},"devDependencies": {"types/react": "^18.0.33","types/react-resizable": "^…

前端面试题——Vue的双向绑定

前言 双向绑定机制是Vue中最重要的机制之一,甚至可以说是Vue框架的根基,它将数据与视图模板相分离,使得数据处理和页面渲染更为高效,同时它也是前端面试题中的常客,接下来让我们来了解什么是双向绑定以及其实现原理。…