【数据结构]排序算法之插入排序、希尔排序和选择排序

简单不先于复杂,而是在复杂之后。

在这里插入图片描述

文章目录

    • 1. 排序的概念及其运用
      • 1.1 排序的概念
      • 1.2 排序运用
      • 1.3 常见的排序算法
    • 2. 常见排序算法的实现
      • 2.1 插入排序
        • 2.1.1 基本思想
        • 2.1.2 直接插入排序
        • 2.1.3 希尔排序(缩小增量排序)
      • 2.2. 选择排序
        • 2.2.1 基本思想
        • 2.2.2 直接选择排序
        • 2.2.3 堆排序

1. 排序的概念及其运用

1.1 排序的概念

排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。

稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i] = r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则则称为不稳定的。

内部排序:数据元素全部放在内存中的排序。

外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

1.2 排序运用

在这里插入图片描述

在这里插入图片描述

1.3 常见的排序算法

在这里插入图片描述

// 排序实现的接口
// 插入排序
void InsertSort(int* a, int n);
// 希尔排序

void ShellSort(int* a, int n);
// 选择排序
void SelectSort(int* a, int n);
// 堆排序
void AdjustDwon(int* a, int n, int root);
void HeapSort(int* a, int n);
// 冒泡排序
void BubbleSort(int* a, int n)
// 快速排序递归实现
// 快速排序hoare版本
int PartSort1(int* a, int left, int right);
// 快速排序挖坑法
int PartSort2(int* a, int left, int right);
// 快速排序前后指针法
int PartSort3(int* a, int left, int right);
void QuickSort(int* a, int left, int right);
// 快速排序 非递归实现
void QuickSortNonR(int* a, int left, int right)
// 归并排序递归实现
void MergeSort(int* a, int n)
// 归并排序非递归实现
void MergeSortNonR(int* a, int n)
// 计数排序
void CountSort(int* a, int n)
// 测试排序的性能对比
void TestOP()
{
srand(time(0));
const int N = 100000;
int* a1 = (int*)malloc(sizeof(int)*N);
int* a2 = (int*)malloc(sizeof(int)*N);
int* a3 = (int*)malloc(sizeof(int)*N);
int* a4 = (int*)malloc(sizeof(int)*N);
int* a5 = (int*)malloc(sizeof(int)*N);
int* a6 = (int*)malloc(sizeof(int)*N);
for (int i = 0; i < N; ++i)
{
a1[i] = rand();
a2[i] = a1[i];
a3[i] = a1[i];
a4[i] = a1[i];
a5[i] = a1[i];
a6[i] = a1[i];
    }
int begin1 = clock();
InsertSort(a1, N);
int end1 = clock();
int begin2 = clock();
ShellSort(a2, N);
int end2 = clock();
int begin3 = clock();
SelectSort(a3, N);
int end3 = clock();
int begin4 = clock();
HeapSort(a4, N);
int end4 = clock();
int begin5 = clock();
QuickSort(a5, 0, N-1);
int end5 = clock();
int begin6 = clock();
MergeSort(a6, N);
int end6 = clock();
printf("InsertSort:%d\n", end1 - begin1);
printf("ShellSort:%d\n", end2 - begin2);
printf("SelectSort:%d\n", end3 - begin3);
printf("HeapSort:%d\n", end4 - begin4);
printf("QuickSort:%d\n", end5 - begin5);
printf("MergeSort:%d\n", end6 - begin6);
free(a1);
free(a2);
free(a3);
free(a4);
free(a5);
free(a6);
}

排序OJ(可使用各种排序跑这个OJ)

2. 常见排序算法的实现

2.1 插入排序

2.1.1 基本思想

直接插入排序是一种简单的插入排序法,其基本思想是:

把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列。

实际中我们玩扑克牌时,就使用了插入排序的思想:

在这里插入图片描述

2.1.2 直接插入排序

当插入第 i(i>=1)个元素时,前面的 array[0], array[1], …, array[i-1]已经排好序,此时用array[i]的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移。

在这里插入图片描述

直接插入排序的特性总结:

  1. 元素集合越接近有序,直接插入排序算法的时间效率越高
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1),它是一种稳定的排序算法
  4. 稳定性:稳定
2.1.3 希尔排序(缩小增量排序)

希尔排序法又称缩小增量法。

希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达=1时,所有记录在统一组内排好序。

在这里插入图片描述

希尔排序的特性总结:

  1. 希尔排序是对直接插入排序的优化
  2. 当 gap > 1 时都是预排序,目的是让数组更接近于有序;当 gap = 1 时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
  3. 希尔排序的时间复杂度不好计算,因为 gap 的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定

在这里插入图片描述

在这里插入图片描述

因为咱们的gap是按照Knuth提出的方式取值的,而且Knuth进行了大量的试验统计,我们暂时就按照:O(n1.25~=)到O(1.6 * n1.25)来算。

  1. 稳定性:不稳定

2.2. 选择排序

2.2.1 基本思想

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

2.2.2 直接选择排序
  • 在元素集合array[i]–array[n-1]中选择关键码最大(小)的数据元素
  • 若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
  • 在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素

在这里插入图片描述

直接选择排序的特性总结

  1. 直接选择排序思考非常好理解,但是效率不是很好,实际中很少使用。
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定
2.2.3 堆排序

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。

它是通过堆来进行选择数据。

需要注意的是排升序要建大堆,排降序建小堆。

在这里插入图片描述

堆排序的特性总结

  1. 堆排序使用堆来选数,效率就高了很多。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/371094.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Menu组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之Menu组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Menu组件 TextClock组件通过文本将当前系统时间显示在设备上。支持不同时区的时间…

Ubuntu+GPU搭建Stable-Diffusion教程

【前序】已经安装anaconda 1.git拉取项目到本地 执行git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git 进入项目目录下 cd stable-diffusion-webui/ 2. 安装对应Python依赖包 首先安装pytorch和torchvision&#xff0c;若是GPU环境的用户需要安装与cu…

PHP入门指南:API

PHP入门指南&#xff1a;API 1. 简介2. API的基础概念2.1 什么是API&#xff1f;2.2 API的类型2.3 API的作用2.4 RESTful API2.5 API的基本构成元素 3. PHP与API的交互基础3.1 发送HTTP请求3.2 处理HTTP响应3.3 异常处理3.4 确保安全性 4. 如何在PHP中创建一个简单的API4.1 设计…

ShardingSphere 5.x 系列【5】Spring Boot 3.1 集成Sharding Sphere-JDBC并实现读写分离

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Spring Boot 版本 3.1.0 本系列ShardingSphere 版本 5.4.0 源码地址&#xff1a;https://gitee.com/pearl-organization/study-sharding-sphere-demo 文章目录 1. 概述2. 使用限制3. 案例演示3.…

【蓝桥杯选拔赛真题64】python数字塔 第十五届青少年组蓝桥杯python 选拔赛比赛真题解析

python数字塔 第十五届蓝桥杯青少年组python比赛选拔赛真题 一、题目要求 (注:input()输入函数的括号中不允许添加任何信息) 提示信息: 数字塔是由 N 行数堆积而成,最顶层只有一个数,次顶层两个数,以此类推。相邻层之间的数用线连接,下一层的每个数与它上一层左上…

智能设备管理系统:PreMaint助力药厂攻克设备管理难题

在药品生产中&#xff0c;设备管理是确保质量的关键环节。传统的手工操作和纸笔记录方式已经难以适应当今药厂的需求&#xff0c;存在诸多问题。这些问题包括设备管理工作的不成体系&#xff0c;难以随时掌握设备的状态&#xff0c;以及设备无法满足工艺流程的需求。面对这些挑…

【Linux系统化学习】进程等待

目录 进程等待 进程等待的必要性 进程等待的方法 wait方法 等待一个进程(阻塞等待&#xff09; waitpid方法 任意等待多个进程&#xff08;阻塞等待&#xff09; 父进程获取子进程的退出信息 非阻塞轮询等待 进程等待 进程等待的必要性 之前讲过&#xff0c;子进程退…

乐意购项目前端开发 #7

一、购物车 本地购物车 创建cartStore.js文件 创建cartStore.js文件, 将购物车列表数据存在pinia中 import { ref, computed } from "vue"; import { defineStore } from "pinia"; import { useUserStore } from "./user"; import {insertCart…

One time pad 图像加密MATLAB程序

使用一次加密的形式对图像进行加密。 采用异或的方式实现。 加密、解密结果如下: 程序代码如下: % 读取原始图像并显示 originalImage = imread(lena256.bmp); % 更换为你的图像文件名 subplot(1,3,1),imshow(originalImage); title(Original Image);% 生成与图像相同大…

ElementUI鼠标拖动没列宽度

其实 element ui 表格Table有提供给我们一个resizable属性 按官方文档上描述 它就是控制是否允许拖拽表格列大小的属性 而且 它的默认值就是 true 但是依旧很多人会反应拖拽不了 首先 表格要有边框 如果没有变宽 确实是拖拽不了 给 el-table加上 border属性 运行结果如下 但…

算法学习打卡day47|单调栈系列题目

单调栈题目思路 通常是一维数组&#xff0c;要寻找任一个元素的右边或者左边第一个比自己大或者小的元素的位置&#xff0c;此时我们就要想到可以用单调栈了。时间复杂度为O(n)。单调栈的本质是空间换时间&#xff0c;因为在遍历的过程中需要用一个栈来记录右边第一个比当前元…

opencv中使用cuda加速图像处理

opencv大多数只使用到了cpu的版本&#xff0c;实际上对于复杂的图像处理过程用cuda&#xff08;特别是高分辨率的图像&#xff09;可能会有加速效果。是否需要使用cuda需要思考&#xff1a; 1、opencv的cuda库是否提供了想要的算子。在CUDA-accelerated Computer Vision你可以…

探索前端开发框架:React、Angular 和 Vue 的对决(三)

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

【Linux】EXT2文件系统 | 磁盘分区块组 | inode

文章目录 一、前言二、EXT2文件系统 - 逻辑存储结构&#x1f4be;分区&#xff08;Partition&#xff09;分区的概念每个分区的内容Linux下查询磁盘分区 &#x1f4be;块组&#xff08;Block Group&#xff09;磁盘格式化每个块组的内容1. Superblock&#xff08;超级块&#x…

idea常用设置

1、内存优化 根据自己电脑本身的内存&#xff0c;对idea安装包里bin目录下的idea64.exe.vmoptions文件进行修改 -server -Xms256m -Xmx2048m -XX:MaxPermSize1024m -XX:ReservedCodeCacheSize256m -ea -Dsun.io.useCanonCachesfalse -Djava.Net.preferIPv4Stacktrue -Djsse.e…

【2024.2.4练习】国王游戏

题目描述 题目思路 涉及排列组合求最优解问题&#xff0c;数据大考虑是否满足某种贪心策略。 假设不除以右手的数字&#xff0c;那么获得金币数量最多的显然为最后一个人。左手数字最大的应排在最后一位。在右手有数字的情况下&#xff0c;不妨也尝试从最后一个人开始排。 假…

jquery事件

目录 &#x1f338;页面载入ready &#x1f338;鼠标事件 &#x1f339;点击事件 &#x1f490;按下抬起变色 &#x1f339;悬浮事件 &#x1f339;移动事件 &#x1f338;​编辑 &#x1f338;键盘事件 &#x1f339;keypress &#x1f339;keydown &#x1f338;焦…

SD-WAN:企业网络转型的不可逆趋势

随着SD-WAN的逐渐发展和完善&#xff0c;越来越多的企业开始选择SD-WAN进行网络转型。IDC研究显示&#xff0c;已有47%的企业成功迁移到SD-WAN&#xff0c;另有48%的公司表示&#xff0c;未来两个月内将纷纷投入这一技术的部署。 据Channel Futures报道&#xff0c;一位合作伙伴…

机器学习本科课程 实验3 决策树处理分类任务

实验3.1 决策树处理分类任务 使用sklearn.tree.DecisionTreeClassifier完成肿瘤分类&#xff08;breast-cancer&#xff09;计算最大深度为10时&#xff0c;十折交叉验证的精度(accuracy)&#xff0c;查准率(precision)&#xff0c;查全率(recall)&#xff0c;F1值绘制最大深度…

【云原生运维问题记录】kubesphere登录不跳转问题

文章目录 现象问题排查 结论先行&#xff1a;kubesphere-system名称空间下reids宕机重启&#xff0c;会判断是否通过registry-proxy重新拉取镜像&#xff0c;该镜像原本是通过阿里云上拉取&#xff0c;代理上没有出现超时情况&#xff0c;导致失败。解决方案&#xff1a;删除re…