opencv中使用cuda加速图像处理

opencv大多数只使用到了cpu的版本,实际上对于复杂的图像处理过程用cuda(特别是高分辨率的图像)可能会有加速效果。是否需要使用cuda需要思考:

  • 1、opencv的cuda库是否提供了想要的算子。在CUDA-accelerated Computer Vision你可以看到cv的cuda库提供了哪些方法。
  • 2、如果要使用cv的cuda库,会涉及到数据从cpu和gpu之间的交换。一张图片首先会被cpu读取到内存中,然后通过api将cpu中的数据搬运到gpu中,而cpu和gpu之间的数据搬运也是很耗时的,比如gpu_dst.download(dst_cpu)将gpu_dst数据搬运到dst_cpu,数据是8976*4960*3,耗时约37ms,如果你的图像处理比较简单,说不定数据搬运的耗时比直接在cpu上运行更长。

1、带cuda的opencv安装

这里的前提是你的nvidia驱动、cuda以及cudnn都安装完成,可以正常使用。

首先下载版本一致的opencv和opencv-contrib(cuda库所在包),然后解压待用。

然后查询你显卡的Compute Capability,进入opencv-4.8.1后创建build文件夹,终端在build中打开后,执行:

cmake \ 
-D CMAKE_BUILD_TYPE=RELEASE \ 
-D BUILD_CUDA_STUBS=ON \         
-D WITH_CUDA=ON \                   
-D CUDA_ARCH_BIN=8.9 \ 
-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.8.1/modules .. 

注意,CUDA_ARCH_BIN是你查询到自己显卡的Compute Capability,OPENCV_EXTRA_MODULES_PATH指向你的opencv_contrib-4.8.1/modules。(最后的..不能省略)
在这里插入图片描述
可以看到成功检测到我的11.8的cuda,但是没有cuDNN。不知道是不是新版的原因,我安装好cudnn后通过命令cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2查询cudnn版本没有任何输出,但是确实存在cudnn.h,并在在使用cuda时也没有问题,就没有(后面在opencv使用cuda也没有报错)。

然后:sudo make –j15,表示使用15个线程make,因cpu而异。
最后sudo make install

后续的操作参考ubuntu20.04+opencv+vscode添加环境变量。

2、测试

编写c++代码测试:

#include <opencv2/opencv.hpp>
#include <opencv2/core/cuda.hpp>

int main()
{
    cv::cuda::printCudaDeviceInfo(cv::cuda::getDevice());

    int count = cv::cuda::getCudaEnabledDeviceCount();

    printf("GPU Device Count : %d \n", count);

    return 0;
}

在这里插入图片描述
如果是不支持cuda的cv,则会报错:error: (-216:No CUDA support) The library is compiled without CUDA support in function 'throw_no_cuda'

3、在gpu上旋转图像

实际上,在gpu上使用cv总体分为三步:1)将内存中的数据搬运到gpu上;2)使用cuda方法进行图像处理;3)将处理结果搬运到cpu上;

下面是一个将图像逆时针旋转90度的代码,其中Timer类是一个计时器,从创建起计时,到离开作用域被销毁时的耗时。对于4960*8976\的图像进行测试,RGB指3通道,Gray指单通道,测量upload、rotate和download三个阶段的耗时:

RGB(ms)Gray(ms)
upload93
rotate43
download3712

可以看到对于简单的操作实际上耗时在数据的上传和下载。

#include <opencv2/opencv.hpp>
#include <opencv2/cudawarping.hpp>
#include "timer.h"

int main(int argc, char *argv[])
{
    if (argc != 2)
    { // 检查是否传入图片路径
        std::cout << "参数错误" << std::endl;
    }

    // 以灰度图模式读取输入图像
    cv::Mat src = cv::imread(argv[1]);
    if (src.empty())
    {
        std::cerr << "Failed to read input image!" << std::endl;
        return -1;
    }

    cv::Mat dst_cpu; // 在cpu创建一个Mat,接受处理后的图像结果

    cv::cuda::GpuMat gpu_src, gpu_dst;   // 在gpu创建两个Mat,分别储存旋转前后的图像(因为旋转前后尺寸不一样,所以必须要两个Mat)
    gpu_dst.create(8976, 4960, CV_8UC3); // 定义旋转后图像尺寸的Mat

    cv::Mat colorImage(8976, 4960, CV_8UC3); // 在cpu创建Mat,一个将灰度图转为RGB图的Mat
    {

        {
            Timer time("upload");
            gpu_src.upload(src); // 将cpu上的src搬运到gpu的gpu_src中
        }
        {
            Timer time("rotate"); // 计时器,从此刻计时直到离开作用域被销毁
                                  // 逆时针旋转90度,将4960*8976转8976*4960,流程是按左上角旋转后,向下平移8976,然后用8976*4960的Mat接受
            cv::cuda::rotate(gpu_src, gpu_dst, gpu_dst.size(), 90, 0, 8976);
        }

        // 将gpu的gpu_dst数据搬运到dst_cpu中(好像只有gpu的数据才有方法)
        {
            Timer time("download");
            gpu_dst.download(dst_cpu); // gpu到cpu搬运数据很耗时,RGB数据耗时37ms,Gray数据耗时12ms
        }
    }
    return 0;
}
# CMakeLists.txt
cmake_minimum_required(VERSION 3.0)
set(CMAKE_BUILD_TYPE Debug)
project(MyProject)

# 添加可执行文件
add_executable(draft draft.cpp src/timer.cpp)

# 设置包含目录
target_include_directories(draft PRIVATE src)

# 查找 OpenCV 库
find_package(OpenCV REQUIRED)

# 将 OpenCV 库链接到可执行文件
target_link_libraries(draft PRIVATE ${OpenCV_LIBS} opencv_cudawarping)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/371077.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

探索前端开发框架:React、Angular 和 Vue 的对决(三)

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

【Linux】EXT2文件系统 | 磁盘分区块组 | inode

文章目录 一、前言二、EXT2文件系统 - 逻辑存储结构&#x1f4be;分区&#xff08;Partition&#xff09;分区的概念每个分区的内容Linux下查询磁盘分区 &#x1f4be;块组&#xff08;Block Group&#xff09;磁盘格式化每个块组的内容1. Superblock&#xff08;超级块&#x…

idea常用设置

1、内存优化 根据自己电脑本身的内存&#xff0c;对idea安装包里bin目录下的idea64.exe.vmoptions文件进行修改 -server -Xms256m -Xmx2048m -XX:MaxPermSize1024m -XX:ReservedCodeCacheSize256m -ea -Dsun.io.useCanonCachesfalse -Djava.Net.preferIPv4Stacktrue -Djsse.e…

【2024.2.4练习】国王游戏

题目描述 题目思路 涉及排列组合求最优解问题&#xff0c;数据大考虑是否满足某种贪心策略。 假设不除以右手的数字&#xff0c;那么获得金币数量最多的显然为最后一个人。左手数字最大的应排在最后一位。在右手有数字的情况下&#xff0c;不妨也尝试从最后一个人开始排。 假…

jquery事件

目录 &#x1f338;页面载入ready &#x1f338;鼠标事件 &#x1f339;点击事件 &#x1f490;按下抬起变色 &#x1f339;悬浮事件 &#x1f339;移动事件 &#x1f338;​编辑 &#x1f338;键盘事件 &#x1f339;keypress &#x1f339;keydown &#x1f338;焦…

SD-WAN:企业网络转型的不可逆趋势

随着SD-WAN的逐渐发展和完善&#xff0c;越来越多的企业开始选择SD-WAN进行网络转型。IDC研究显示&#xff0c;已有47%的企业成功迁移到SD-WAN&#xff0c;另有48%的公司表示&#xff0c;未来两个月内将纷纷投入这一技术的部署。 据Channel Futures报道&#xff0c;一位合作伙伴…

机器学习本科课程 实验3 决策树处理分类任务

实验3.1 决策树处理分类任务 使用sklearn.tree.DecisionTreeClassifier完成肿瘤分类&#xff08;breast-cancer&#xff09;计算最大深度为10时&#xff0c;十折交叉验证的精度(accuracy)&#xff0c;查准率(precision)&#xff0c;查全率(recall)&#xff0c;F1值绘制最大深度…

【云原生运维问题记录】kubesphere登录不跳转问题

文章目录 现象问题排查 结论先行&#xff1a;kubesphere-system名称空间下reids宕机重启&#xff0c;会判断是否通过registry-proxy重新拉取镜像&#xff0c;该镜像原本是通过阿里云上拉取&#xff0c;代理上没有出现超时情况&#xff0c;导致失败。解决方案&#xff1a;删除re…

WordPress从入门到精通【安装部署】

初识WordPress WordPress&#xff0c;简称WP&#xff0c;其简称的由来是取英文单词“word”与“press”的首字母 WP中文官网 1WP主站&#xff08;英文&#xff09; 官方标称&#xff0c;已有43%的网站在使用WordPress WordPress亮点 WP使用PHP语言开发&#xff0c;兼容性极…

【Java程序设计】【C00248】基于Springboot的摄影跟拍预定管理系统(有论文)

基于Springboot的摄影跟拍预定管理系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的摄影跟拍预定管理系统 本系统分为系统功能模块、管理员功能模块、摄影师功能模块以及用户功能模块。 系统功能模块&#xf…

SpringMVC精简知识点

SpringMVC 数据格式化基本数据类型和字符串自动转换特殊数据类型和字符串自动转换 验证及国际化应用实例注意事项和使用细节注解的结合使用数据类型转换校验核心类-DatBinder取消某个属性的绑定中文乱码解决处理json和HttpMessageConverter<T>作业布置SpringMVC文件上传自…

Sklearn、TensorFlow 与 Keras 机器学习实用指南第三版(四)

原文&#xff1a;Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 第二部分&#xff1a;神经网络和深度学习 第十章&#xff1a;使用 Keras 入门人工神经网络 鸟类启发我们飞行&#xff0c;牛蒡植…

Qt PCL学习(一):环境搭建

参考 (QT配置pcl)PCL1.12.1QT5.15.2vs2019cmake3.22.4vtk9.1.0visual studio2019Qt5.15.2PCL1.12.1vtk9.1.0cmake3.22.2 本博客用到的所有资源 版本一览&#xff1a;Visual Studio 2019 Qt 5.15.2 PCL 1.12.1 VTK 9.1.0https://pan.baidu.com/s/1xW7xCdR5QzgS1_d1NeIZpQ?pw…

【CSS + ElementUI】更改 el-carousel 指示器样式且隐藏左右箭头

需求 前三条数据以走马灯形式展现&#xff0c;指示器 hover 时可以切换到对应内容 实现 <template><div v-loading"latestLoading"><div class"upload-first" v-show"latestThreeList.length > 0"><el-carousel ind…

2024-2-4-复习作业

源代码&#xff1a; #include <stdio.h> #include <stdlib.h> typedef int datatype; typedef struct Node {datatype data;struct Node *next;struct Node *prev; }*DoubleLinkList;DoubleLinkList create() {DoubleLinkList s(DoubleLinkList)malloc(sizeof(st…

Docker进阶篇-轻量级可视化工具Portainer

一、简介 Portainer是一款轻量级的应用&#xff0c;它提供了图形化界面&#xff0c;用于方便地管理Docker环境&#xff0c;包括单机环 境和集群环境。 Portainer分为开源社区版&#xff08;CE版&#xff09;和商用版&#xff08;BE版/EE版&#xff09;。 官网&#xff1a;P…

LeetCode:2.两数相加

目录 题目&#xff1a;​编辑2. 两数相加 - 力扣&#xff08;LeetCode&#xff09; 分析问题&#xff1a; 官方的优秀代码博主的注释&#xff1a; 博主的辣眼代码&#xff0c;无注释&#xff0c;拉出来拷打自己&#xff1a; 每日表情包&#xff1a; 2. 两数相加 - 力扣&am…

深度学习-随机梯度下降

在训练过程中使用随机梯度下降&#xff0c;但没有解释它为什么起作用。为了澄清这一点&#xff0c;将继续更详细地说明随机梯度下降&#xff08;stochastic gradient descent&#xff09;。 %matplotlib inline import math from mxnet import np, npx from d2l import mxnet …

C# CAD界面-自定义工具栏(二)

运行环境 vs2022 c# cad2016 调试成功 一、引用 acdbmgd.dllacmgd.dllaccoremgd.dllAutodesk.AutoCAD.Interop.Common.dllAutodesk.AutoCAD.Interop.dll using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.T…

RK3568平台 设备模型基本框架-kobject 和kset

一.什么是设备模型 字符设备驱动通常适用于相对简单的设备&#xff0c;对于一些更复杂的功能&#xff0c;比如说电源管理和热插拔事件管理&#xff0c;使用字符设备框架可能不够灵活和高效。为了应对更复杂的设备和功能&#xff0c;Linux内核提供了设备模型。设备模型允许开发…