回归预测 | Matlab实现POA-CNN-LSTM-Attention鹈鹕算法优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)

回归预测 | Matlab实现POA-CNN-LSTM-Attention鹈鹕算法优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)

目录

    • 回归预测 | Matlab实现POA-CNN-LSTM-Attention鹈鹕算法优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)
      • 预测效果
      • 基本描述
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现POA-CNN-LSTM-Attention鹈鹕算法优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制);
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,输入多个特征,输出单个变量,多变量回归预测,
main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE多指标评价;
5.鹈鹕优化学习率,隐藏层节点,正则化系数;

模型描述

注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式资源处直接下载:Matlab实现POA-CNN-LSTM-Attention鹈鹕算法优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)。
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,10 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30,1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)

fitness = @(x)fical(x,num_dim,num_class,p_train,t_train,T_train);

[Best_score,Best_pos,curve]=POA(SearchAgents_no,Max_iteration,lb ,ub,dim,fitness)
Best_pos(1, 2) = round(Best_pos(1, 2));   
best_hd  = Best_pos(1, 2); % 最佳隐藏层节点数
best_lr= Best_pos(1, 1);% 最佳初始学习率
best_l2 = Best_pos(1, 3);% 最佳L2正则化系数
 
%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [
    sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图
    reluLayer("Name", "relu_1")                                          
tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层
    flattenLayer("Name", "flatten")                                  % 网络铺平层
       fullyConnectedLayer(num_class, "Name", "fc")                                      % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 
                                                                     

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/370368.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

超时引发的牛角尖二(hystrix中的超时)

至今我都清楚记得自己负责的系统请求云上关联系统时所报的异常信息。为了解决这个异常,我坚持让这个关联系统的负责人查看,并且毫不顾忌他的嘲讽和鄙视,甚至无视他烦躁的情绪。不过我还是高估了自己的脸皮,最终在其恶狠狠地抛下“…

智能决策的艺术:探索商业分析的最佳工具和方法

文章目录 一、引言二、商业分析思维概述三、数据分析在商业实践中的应用四、如何培养商业分析思维与实践能力五、结论《商业分析思维与实践:用数据分析解决商业问题》亮点内容简介作者简介目录获取方式 一、引言 随着大数据时代的来临,商业分析思维与实…

前端小案例——滚动文本区域(HTML+CSS, 附源码)

一、前言 实现功能: 这个案例实现了一个具有滚动功能的文本区域&#xff0c;用于显示长文本内容&#xff0c;并且可以通过滚动条来查看完整的文本内容。 实现逻辑&#xff1a; 内容布局&#xff1a;在<body>中&#xff0c;使用<div>容器创建了一个类名为listen_t…

vue3 之 组合式API—watch函数

watch函数 作用&#xff1a;侦听一个或者多个数据的变化&#xff0c;数据变化时执行回调函数 两个额外参数&#xff1a; 1.immediate&#xff08;立即执行&#xff09;2.deep&#xff08;深度侦听&#xff09; 场景&#xff1a;比如选择不同的内容请求后端不同数据时 如下图 …

【算法与数据结构】300、674、LeetCode最长递增子序列 最长连续递增序列

文章目录 一、300、最长递增子序列二、674、最长连续递增序列三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、300、最长递增子序列 思路分析&#xff1a; 第一步&#xff0c;动态数组的含义。 d p [ i ] dp[i] dp[i…

IDEA 配置以及一些技巧

1. IDEA设置 1.1 设置主题 1.2 设置字体和字体大小 1.3 编辑区的字体用ctrl鼠标滚轮可以控制大小 1.4 自动导包和优化多余的包 1.5 设置编码方式 1.6 配置 maven 1.7 设置方法形参参数提示 1.8 设置控制台的字体和大小 注意&#xff1a;设置控制台字体和大小后需要重启IDEA才会…

异步解耦之RabbitMQ(二)_RabbitMQ架构及交换机

异步解耦之RabbitMQ(一)-CSDN博客 RabbitMQ架构 RabbitMQ是一个基于AMQP&#xff08;Advanced Message Queuing Protocol&#xff09;协议的消息代理中间件&#xff0c;它通过交换机和队列实现消息的路由和分发。以下是RabbitMQ的架构图&#xff1a; Producer&#xff08;生产…

LabVIEW风力发电机在线监测

LabVIEW风力发电机在线监测 随着可再生能源的发展&#xff0c;风力发电成为越来越重要的能源形式。设计了一个基于控制器局域网&#xff08;CAN&#xff09;总线和LabVIEW的风力发电机在线监测系统&#xff0c;实现风力发电机的实时监控和故障诊断&#xff0c;以提高风力发电的…

ArrayList在添加元素时报错java.lang.ArrayIndexOutOfBoundException

一、添加单个元素数组越界分析 add源码如下 public boolean add(E e) {ensureCapacityInternal(size 1); // Increments modCount!!elementData[size] e;return true; } size字段的定义 The size of the ArrayList (the number of elements it contains). ArrayList的大…

【面试官问】Redis 持久化

目录 【面试官问】Redis 持久化 Redis 持久化的方式RDB(Redis DataBase)AOF(Append Only File)混合持久化:RDB + AOF 混合方式的持久化持久化最佳方式控制持久化开关主从部署使用混合持久化使用配置更高的机器参考文章所属专区

【Django】Cookie和Session的使用

Cookies和Session 1. 会话 从打开浏览器访问一个网站&#xff0c;到关闭浏览器结束此次访问&#xff0c;称之为一次会话。 HTTP协议是无状态的&#xff0c;导致会话状态难以保持。 Cookies和Session就是为了保持会话状态而诞生的两个存储技术。 2. Cookies 2.1 Cookies定…

机器学习系列——(六)数据降维

引言 在机器学习领域&#xff0c;数据降维是一种常用的技术&#xff0c;旨在减少数据集的维度&#xff0c;同时保留尽可能多的有用信息。数据降维可以帮助我们解决高维数据带来的问题&#xff0c;提高模型的效率和准确性。本文将详细介绍机器学习中的数据降维方法和技术&#…

【Linux取经路】进程控制——程序替换

文章目录 一、单进程版程序替换看现象二、程序替换的基本原理三、程序替换接口学习3.1 替换自己写的可执行程序3.2 第三个参数 envp 验证四、结语一、单进程版程序替换看现象 #include <stdio.h> #

Vue学习笔记之组件基础

1、组件的定义 一般将 Vue 组件定义在一个单独的 .vue 文件中&#xff0c;称做单文件组件&#xff1b;当然也可以将组件直接定义在js文件中&#xff0c;如下js代码&#xff0c;定义一个组件BlogPost&#xff0c;通过props定义对外暴露属性title&#xff0c;父组件传递title&am…

List的模拟实现 迭代器

———————————————————— list与vector相比&#xff0c;插入、删除等操作实现的成本非常低&#xff0c;如果在C语言阶段熟悉理解过链表&#xff0c;那么现在实现起来list就显得比较简单&#xff0c;可以说操作层面上比vector更简洁&#xff0c;因为list没有扩…

C++ 动态规划 线性DP 最长上升子序列

给定一个长度为 N 的数列&#xff0c;求数值严格单调递增的子序列的长度最长是多少。 输入格式 第一行包含整数 N 。 第二行包含 N 个整数&#xff0c;表示完整序列。 输出格式 输出一个整数&#xff0c;表示最大长度。 数据范围 1≤N≤1000 &#xff0c; −109≤数列中的数…

istio 限流

#详细参数看官网&#xff0c;我参数就不解释https://istio.io/latest/docs/reference/config/networking/destination-rule/cat << EOF > dr.yaml apiVersion: networking.istio.io/v1alpha3 kind: DestinationRule metadata:name: my-testnamespace: demon spec:hos…

瑞_23种设计模式_抽象工厂模式

文章目录 1 抽象工厂模式&#xff08;Abstract Factory Pattern&#xff09;1.1 概念1.2 介绍1.3 小结1.4 结构 2 案例一2.1 需求2.2 代码实现 3 案例二3.1 需求3.2 代码实现 4 总结4.1 抽象工厂模式优缺点4.2 抽象工厂模式使用场景4.3 抽象工厂模式 VS 工厂方法模式4.4 抽象工…

记一次生产系统每隔10小时(36000000毫秒)固定进行一次Full GC排查思路

一、 背景描述 某个应用在生产环境通过系统监控发现&#xff0c;应用每隔10小时就会触发一次Full GC&#xff0c;该系统当时承接的业务量并不大&#xff0c;而且固定10小时就会进行Full GC&#xff0c;通过监控时间轴发现Full GC频率很规律&#xff0c;直觉告诉我这不是JVM自身…

回归预测 | Matlab实现RIME-CNN-LSTM-Attention霜冰优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)

回归预测 | Matlab实现RIME-CNN-LSTM-Attention霜冰优化卷积长短期记忆网络注意力多变量回归预测&#xff08;SE注意力机制&#xff09; 目录 回归预测 | Matlab实现RIME-CNN-LSTM-Attention霜冰优化卷积长短期记忆网络注意力多变量回归预测&#xff08;SE注意力机制&#xff0…