[Python] opencv - 什么是直方图?如何绘制图像的直方图?

什么是直方图?

直方图是一种统计图,用于展示数据的分布情况。它将数据按照一定的区间或者组进行划分,然后计算在每个区间或组内的数据频数或频率(即数据出现的次数或占比),然后用矩形或者柱形图的形式将这些频数或频率表示出来。横轴表示数据的区间或组,纵轴表示频数或频率,通过矩形或柱形的高度来表示频数或频率的大小。直方图可以用于直观地展示数据的分布情况,分析数据的集中趋势、离散程度和异常值等。

什么是图像直方图?

图像直方图是用来表示数字图像亮度或颜色分布的统计图。它可以显示图像中每个像素值或像素值范围的频数或频率。图像直方图以横轴表示像素值,纵轴表示像素值的频数或频率。对于灰度图像,直方图展示了每个像素值出现的次数或占比。对于彩色图像,可以将图像分解为红、绿、蓝通道,每个通道的直方图分别表示了该通道像素值的分布情况。

图像直方图可以提供有关图像亮度或颜色分布的重要信息。例如,在灰度图像中,直方图的形状可以反映图像的对比度和明暗程度。在彩色图像中,通过分析不同通道的直方图,可以了解图像的色彩分布情况,例如颜色偏移、色彩饱和度等。图像直方图在图像处理和计算机视觉中广泛应用,用于图像增强、颜色分析、图像检索等任务中。

opencv的calcHist函数介绍

cv2.calcHist()函数是OpenCV中用于计算图像直方图的函数。它的语法如下:

cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])

参数解释:

  • images:输入的图像,可以是一个图像或图像列表。
  • channels:用于计算直方图的通道编号,如果输入的图像是灰度图像,则通道值为[0];如果是彩色图像,通道值可以是[0]、[1]或[2],分别表示B、G、R通道。
  • mask:可选参数,用于指定感兴趣区域。如果不提供,则计算整个图像的直方图。
  • histSize:直方图的桶数,表示直方图的分组数量。
  • ranges:直方图的像素值范围,通常为[0, 256]。
  • hist:可选参数,用于存储计算得到的直方图。
  • accumulate:可选参数,用于指定是否累加直方图。

返回值:

  • hist:计算得到的直方图。

cv2.calcHist()函数会根据指定的通道和大小,计算输入图像的直方图。可以通过调整参数来计算灰度图像或彩色图像的直方图。计算得到的直方图可以用于图像处理、分析和可视化等应用。

如何灰度图像的直方图?

在Python中,可以使用matplotlib库 + opencv库来绘制灰度图像的直方图。下面是一个简单的示例:

import cv2
import matplotlib.pyplot as plt

# 读取灰度图像
image = cv2.imread('2_0_2_2170.png', 0)

# 计算直方图
histogram = cv2.calcHist([image], [0], None, [256], [0, 256])

# 绘制直方图
plt.figure()
plt.title('Histogram')
plt.xlabel('Pixel Value')
plt.ylabel('Frequency')
plt.plot(histogram)
plt.xlim([0, 256])
plt.show()

在上面的示例中,我们首先使用cv2.imread()函数读取灰度图像。然后,使用cv2.calcHist()函数计算图像的直方图。该函数接受以下参数:图像(以数组的形式传递,所以使用方括号括起来),通道(如果是灰度图像,通道为[0]),掩码(用于指定对哪些像素计算直方图,None表示计算整个图像的直方图),直方图的bin数(256表示每个像素值都有一个bin),像素值范围([0, 256]表示像素值的范围)。最后,使用matplotlib.pyplot库绘制直方图,设置标题、x轴、y轴标签,以及绘制直方图的范围。

运行以上代码,将会显示灰度图像的直方图。你可以根据实际情况修改代码中的图像路径和参数,来绘制不同灰度图像的直方图。

如何绘制彩色图像的直方图?

import cv2
import matplotlib.pyplot as plt

# 读取彩色图像
image = cv2.imread('beauty_01.jpg')

# 将图像从BGR颜色空间转换为RGB颜色空间
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

# 将图像展平为一维数组
pixels = image_rgb.reshape(-1, 3)

# 绘制直方图
plt.figure()
plt.title('Histogram')
plt.xlabel('Pixel Value')
plt.ylabel('Frequency')
colors = ('r', 'g', 'b')
for i, color in enumerate(colors):
    histogram = cv2.calcHist([image_rgb], [i], None, [256], [0, 256])
    plt.plot(histogram, color=color)
    plt.xlim([0, 256])
plt.show()

在上述示例中,我们首先使用cv2.imread()函数读取彩色图像。然后,使用cv2.cvtColor()函数将图像从BGR颜色空间转换为RGB颜色空间。接下来,我们使用reshape()函数将图像展平为一维数组,以便于计算直方图。然后,使用cv2.calcHist()函数计算每个颜色通道的直方图。最后,使用matplotlib.pyplot库绘制直方图,设置标题、x轴、y轴标签,以及为每个颜色通道分别绘制直方图。

运行以上代码,将会显示彩色图像的直方图。你可以根据实际情况修改代码中的图像路径和参数,来绘制不同彩色图像的直方图。

什么是直方图均衡化?

直方图均衡化是一种图像处理技术,用于增强图像的对比度。 它通过重新分配图像的灰度级,使得原始图像中灰度级较少的区域在整个灰度范围内更均匀地分布。直方图均衡化可以增加图像的视觉效果和细节,并用于图像增强、图像分割、图像识别等应用中。

如何进行直方图均衡化?

opencv中,可以通过equalizeHist函数来进行灰度图的直方图均衡化。

cv2.equalizeHist()函数是OpenCV中用于直方图均衡化的函数。它将输入图像的直方图进行均衡化,以提升图像的对比度和亮度。

该函数的语法如下:

dst = cv2.equalizeHist(src)

参数说明:

  • src:输入图像,可以是灰度图像或彩色图像。

返回值:

  • dst:均衡化后的图像。

函数的工作原理如下:

  1. 计算输入图像的直方图。
  2. 计算直方图的累积分布函数(Cumulative Distribution Function,CDF)。
  3. 根据CDF对输入图像进行像素值的映射,将较暗的像素值转化为较亮的像素值,以实现直方图均衡化。
  4. 返回均衡化后的图像。

直方图均衡化可以提高图像的对比度,使得图像中的细节更加清晰。它常用于图像增强、视觉处理和计算机视觉中的预处理步骤。

使用案例:

import cv2

# 读取图像
image = cv2.imread('beauty_01.jpg', cv2.IMREAD_GRAYSCALE)  # 以灰度模式读取图像

# 进行直方图均衡化
equalized_image = cv2.equalizeHist(image)

# 显示原始图像和均衡化后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Equalized Image', equalized_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/369939.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

学成在线:媒体资源管理系统(MAM)

媒体资源管理系统(MAM) 媒体资源管理系统(Media Asset Management)是建立在多媒体、网络、数据库和数字存储等先进技术基础上的一个对各种媒体及内容进行数字化存储、管理以及应用的总体解决方案,可以满足媒体资源拥有者收集、保存、查找、编辑、发布各种信息的要求,为媒体资源…

Cannot resolve plugin org.apache.maven.plugins:maven-compiler-plugin:3.8.1

目录 【问题描述】maven环境报错 Cannot resolve plugin org.apache.maven.plugins:maven-compiler-plugin:3.8.1 【解决办法】 检查maven路径是否一致 路径一致的话&#xff0c;更改配置文件settings.xml的镜像源。 添加代码到 <mirrors> <!-- 阿里镜像 --> &l…

Security ❀ TCP异常报文详解

文章目录 1. TCP Out-Of-Order2. TCP Previous Segment Lost3. TCP Retransmission4. TCP Dup Ack XXX#X5. TCP Windows Update6. TCP Previous segment not captured7. 异常案例分析 TCP协议中seq和ack seq的联系&#xff1a; id4的http请求报文由客户端发向服务器&#xff0…

Transformer实战-系列教程1:Transformer算法解读1

&#x1f6a9;&#x1f6a9;&#x1f6a9;Transformer实战-系列教程总目录 有任何问题欢迎在下面留言 Transformer实战-系列教程1&#xff1a;Transformer算法解读1 Transformer实战-系列教程2&#xff1a;Transformer算法解读2 现在最火的AI内容&#xff0c;chatGPT、视觉大模…

初识webpack(一)概念、入口配置、输出配置、loader等

目录 (一)概念 webpack的依赖图 (二)webpack的基本使用 (三)webpack的配置文件 1.入口(entry)配置 2.输出(output)配置 (三)loader 1.css文件处理 (1)安装css-loader和style-loader (2)在webpack.config.js中配置loader 2.less文件处理 3.postcss的使用 (1)安装…

mysql索引有哪些,如何分类

前言 按数据结构分类可分为&#xff1a;Btree索引、Hash索引、Full-text索引。 按物理存储分类可分为&#xff1a;聚簇索引、二级索引&#xff08;辅助索引&#xff09;。 按字段特性分类可分为&#xff1a;主键索引、普通索引、前缀索引。 按字段个数分类可分为&#xff1…

C++拷贝构造函数、赋值运算符重载

1.拷贝构造函数 拷贝构造函数的写法如图所示 调用方式如下 接下来我来说说它的特征 1.1特征 拷贝构造函数&#xff1a;只有单个形参&#xff0c;该形参是对本类类型对象的引用(一般常用const修饰)&#xff0c;在用已存在的类类型对象创建新对象时由编译器自动调用。 拷贝构造函…

推荐系统(Recommender Systems)

一、问题形式化 在接下来的内容中&#xff0c;我将开始讲解推荐系统的一些理论知识。我们从一个例子开始定义推荐系统&#xff0c;假使我们是一个电影供应商&#xff0c;我们有 5 部电影和 4 个用户&#xff0c;我们要求用户为电影打分 前三部电影是爱情片&#xff0c;后两部是…

GPT用来润色论文\生成完整长篇论文\进行AI绘图,真的太香了!

详情点击公众号&#xff1a;技术科研吧 链接&#xff1a;GPT用来润色论文\生成完整长篇论文\进行AI绘图&#xff0c;真的太香了&#xff01; 一&#xff1a;AI领域最新技术 1.OpenAI新模型-GPT-5 2.谷歌新模型-Gemini Ultra 3.Meta新模型-LLama3 4.科大讯飞-星火认知 5.百…

歌声悠扬如往昔

有一首歌 - 朱晓琳&#xff08;网易云单曲&#xff09; 作词 : 陈彼得作曲 : 陈彼得有一首歌我想起你那时候微风轻轻有一首歌我想起你你的感觉温馨有多少的欢笑就有多少的忧伤 愿时光在这里停住(好景不常在)歌声悠扬如往昔哦哦哦咿咿咿有一首歌我和你词意朦胧旋律依稀唱一首歌…

云端录制直播流视频,上传云盘

前言 哪一天我心血来潮&#xff0c;想把我儿子学校的摄像头视频流录制下来&#xff0c;并保存到云盘上&#xff0c;这样我就可以在有空的时候看看我儿子在学校干嘛。想到么就干&#xff0c;当时花了一些时间开发了一个后端服务&#xff0c;通过数据库配置录制参数&#xff0c;…

Vue引入Axios

1.命令安装axios和vue-axios npm install axios --save npm install vue-axios --save 2.package.json查看版本 3.在main.js中引用 import axios from axios; import VueAxios from vue-axios; Vue.use(VueAxios,axios) 4.如何使用 &#xff08;初始化方法&#xff09; 将下列代…

微信小程序实现时间轴效果

目录 引言时间轴效果的应用场景微信小程序的优势时间轴效果的设计思路时间轴界面布局数据结构设计实现时间轴效果WXML结构设计WXSS样式设计JavaScript逻辑实现说明引言 时间轴效果的应用场景 时间轴效果作为一种独特且直观的信息展示形式,已经被广泛应用于各种场景中,提供了…

2023年最受欢迎的4款绘图软件全面评测!

无论你是一个专业的插画家&#xff0c;还是一个有创造力的人&#xff0c;想要随时记录生活的灵感&#xff0c;现在你只需要拿起平板电脑或打开电脑浏览器来描述你脑海中的图片。在这篇文章中&#xff0c;我们选择了四个强大、方便和易于使用的绘图软件&#xff0c;其中一个必须…

【算法】{画决策树 + dfs + 递归 + 回溯 + 剪枝} 解决排列、子集问题(C++)

文章目录 1. 前言2. 算法例题46.全排列78.子集 1. 前言 dfs问题 我们已经学过&#xff0c;对于排列、子集类的问题&#xff0c;一般可以想到暴力枚举&#xff0c;但此类问题用暴力解法 一般都会超时&#xff0c;时间开销过大。对于该种问题&#xff0c;重点在于尽可能详细的 画…

【python】pyqt6信号与槽的代码与designer设置方法

pyqt6信号与槽的作用 整体过程 对象&#xff08;控件&#xff09;接收到一个信号&#xff08;类似clicked这样的函数&#xff09;&#xff0c;就会对接受者&#xff08;自身或者其他控件&#xff09;发出一个我被点击了的信息&#xff0c;然后这个接受者就会执行槽&#xff0…

计算机网络_1.6.3 计算机网络体系结构分层思想举例

1.6.3 计算机网络体系结构分层思想举例 1、实例引入&#xff08;用户在主机中使用浏览器访问web服务器&#xff09;2、从五层原理体系结构的角度研究该实例3、练习题 笔记来源&#xff1a; B站 《深入浅出计算机网络》课程 本节通过一个常见的网络应用实例&#xff0c;来介绍计…

代码混淆技术综述与优化方法

摘要 本文介绍了代码混淆的概念和目的&#xff0c;并提供了Python代码混淆的宏观思路。同时&#xff0c;还介绍了一种在线网站混淆Python代码的方法&#xff0c;并给出了混淆前后的示例代码。 引言 在当今信息时代&#xff0c;软件代码的保护显得尤为重要。代码混淆是一种常…

ReentrantLock相较于synchronized有哪些区别(一)?

ReentrantLock特点 相对于 synchronized 它具备如下特点 可中断 可以设置超时时间 可以设置为公平锁 支持多个条件变量 与 synchronized 一样&#xff0c;都支持可重入 基本使用语法如下&#xff1a; public class Test {public static void main(String[] args) {Reentran…

第十一章[文件系统]:11.2:文件的复制/删除/移动

一,相关文档: os模块: os --- 多种操作系统接口 — Python 3.12.1 文档源代码: Lib/os.py 本模块提供了一种使用与操作系统相关的功能的便捷式途径。 如果你只是想读写一个文件,请参阅 open() ,如果你想操作文件路径,请参阅 os.path 模块,如果你想读取通过命令行给出的所…