《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(2)6.2 最大熵模型

文章目录

    • 6.2 最大熵模型
      • 6.2.1 最大熵原理
      • 6.2.3 最大熵模型的学习
      • 6.2.4 极大似然估计

《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第3章 k邻近邻法
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第1章 统计学习方法概论
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第 2章感知机
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第3章 k邻近邻法
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第4章 朴素贝叶斯法
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第5章 决策树
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(1)6.1 逻辑斯谛回归模型

我算是有点基础的(有过深度学习和机器学的项目经验),但也是半路出家,无论是学Python还是深度学习,都是从问题出发,边查边做,没有系统的学过相关的知识,这样的好处是入门快(如果想快速入门,大家也可以试试,直接上手项目,从小项目开始),但也存在一个严重的问题就是,很多东西一知半解,容易走进死胡同出不来(感觉有点像陷入局部最优解,找不到出路),所以打算系统的学习几本口碑比较不错的书籍。
  书籍选择: 当然,机器学习相关的书籍有很多,很多英文版的神书,据说读英文版的书会更好,奈何英文不太好,比较难啃。国内也有很多书,周志华老师的“西瓜书”我也有了解过,看了前几章,个人感觉他肯能对初学者更友好一点,讲述的非常清楚,有很多描述性的内容。对比下来,更喜欢《统计学习方法》,毕竟能坚持看完才最重要。
  笔记内容: 笔记内容尽量省去了公式推导的部分,一方面latex编辑太费时间了,另一方面,我觉得公式一定要自己推到一边才有用(最好是手写)。尽量保留所有标题,但内容会有删减,通过标黑和列表的形式突出重点内容,要特意说一下,标灰的部分大家最好读一下(这部分是我觉得比较繁琐,但又不想删掉的部分)。
  代码实现: 最后是本章内容的实践,如果想要对应的.ipynb文件,可以留言

6.2 最大熵模型

最大熵模型(maximum entropy model)由最大熵原理推导实现。

这里首先叙述一般的最大熵原理,然后讲解最大熵模型的推导,最后给出最大熵模型学习的形式。

6.2.1 最大熵原理

最大熵原理是概率模型学习的一个准则。最大熵原理认为,学习概率模型时,在所有可能的概率模型(分布)中,熵最大的模型是最好的模型。

通常用约束条件来确定概率模型的集合,所以,最大熵原理也可以表述为在满足约束条件的模型集合中选取熵最大的模型。

假设离散随机变量 X X X概率分布 P ( X ) P(X) P(X),则其(参照5.2.2节)是

H ( P ) = − ∑ x p ( x ) l o g P ( x ) H(P)=-\sum_{x}p(x)logP(x) H(P)=xp(x)logP(x)

熵满足下列不等式:

0 ≤ H ( P ) ≤ l o g ∣ X ∣ 0\leq H(P)\leq log|X| 0H(P)logX

式中, ∣ X ∣ |X| X X X X的取值个数,当且仅当 X X X的分布是均匀分布右边的等号成立

这就是说,当 X X X服从均匀分布时,熵最大

直观地,最大熵原理认为要选择的概率模型

  1. 首先必须满足已有的事实,即约束条件。
  2. 在没有更多信息的情况下,那些不确定的部分都是“等可能的”。

最大熵原理通过熵的最大化来表示等可能性。“等可能”不容易操作,而熵则是一个可优化的数值指标。
在这里插入图片描述
图6.2提供了用最大熵原理进行概率模型选择的几何解释。

概率模型集合 P P P可由欧氏空间中的单纯形(simplex)[2]表示,

  • 如左图的三角形(2-单纯形)。一个代表一个模型,整个单纯形代表模型集合。
  • 右图上的一条直线对应于一个约束条件,直线的交集对应于满足所有约束条件的模型集合。

一般地,这样的模型仍有无穷多个。

学习的目的是在可能的模型集合中选择最优模型,而最大熵原理则给出最优模型选择的一个准则。

6.2.2 最大熵模型的定义

最大熵原理是统计学习的一般原理,将它应用到分类得到最大熵模型。

假设分类模型是一个条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX) X ∈ X ⊆ R n X\in \mathcal{X}⊆R^n XXRn表示输入, Y ∈ Y Y\in \mathcal{Y} YY表示输出, X \mathcal{X} X Y \mathcal{Y} Y分别是输入和输出的集合。

这个模型表示的是对于给定的输入 X X X,以条件概率 P ( Y ∣ X ) P(Y|X) P(YX)输出 Y Y Y

给定一个训练数据集

T = ( ( x 1 , x 1 ) , ( x 2 , x 2 ) 。。。, ( x N , x N ) ) T=((x_1,x_1),(x_2,x_2)。。。,(x_N,x_N)) T=((x1,x1)(x2,x2)。。。,(xN,xN))

学习的目标是用最大熵原理选择最好的分类模型。

首先考虑模型应该满足的条件。给定训练数据集,可以确定联合分布 P ( X , Y ) P(X,Y) P(X,Y)经验分布边缘分布 P ( X ) P(X) P(X)经验分布,分别以 p ^ ( X , Y ) \hat{p}(X,Y) p^(X,Y) p ^ ( X ) \hat{p}(X) p^(X)表示。这里,

联合分布 P ( X , Y ) P(X,Y) P(X,Y)经验分布:

p ^ ( X = x , Y = y ) = v ( X = x , Y = y ) N \hat{p}(X=x,Y=y)=\frac{\mathcal{v}(X=x,Y=y)}{N} p^(X=x,Y=y)=Nv(X=x,Y=y)

边缘分布 P ( X ) P(X) P(X)经验分布:

p ^ ( X = x ) = v ( X = x ) N \hat{p}(X=x)=\frac{\mathcal{v}(X=x)}{N} p^(X=x)=Nv(X=x)

其中,

  • v ( X = x , Y = y ) \mathcal{v}(X=x,Y=y) v(X=x,Y=y)表示训练数据中样本 ( x , y ) (x,y) x,y出现的频数,
  • v ( X = x ) \mathcal{v}(X=x) v(X=x)表示训练数据中输入 x x x出现的频数,
  • N N N表示训练样本容量。

特征函数(feature function) f ( x , y ) f(x,y) f(x,y)描述输入 x x x和输出 y y y之间的某一个事实。

其定义是
在这里插入图片描述
它是一个二值函数[3],当 x x x y y y满足这个事实时取值为1,否则取值为0。

特征函数 f ( x , y ) f(x,y) f(x,y)关于经验分布 p ^ ( X , Y ) \hat{p}(X,Y) p^(X,Y)期望值,用 E p ^ ( f ) E_{\hat{p}}(f) Ep^(f)表示。

在这里插入图片描述

特征函数 f ( x , y ) f(x,y) f(x,y)关于模型 P ( Y ∣ X ) P(Y|X) P(YX)与经验分布$ \hat{p}(X) 的期望值,用 的期望值,用 的期望值,用E_{p}(f)$表示。
在这里插入图片描述
如果模型能够获取训练数据中的信息,那么就可以假设这两个期望值相等,即

在这里插入图片描述
我们将式(6.10)或式(6.11)作为模型学习的约束条件。假如有n个特征函数 f i ( x , y ) , i = 1 , 2 , … , n f_i(x,y),i=1,2,…,n fi(x,y)i1,2,,n,那么就有 n n n个约束条件。
在这里插入图片描述

6.2.3 最大熵模型的学习

最大熵模型的学习过程就是求解最大熵模型的过程。最大熵模型的学习可以形式化为约束最优化问题

对于给定的训练数据集 T = ( ( x 1 , x 1 ) , ( x 2 , x 2 ) 。。。, ( x N , x N ) ) T=((x_1,x_1),(x_2,x_2)。。。,(x_N,x_N)) T=((x1,x1)(x2,x2)。。。,(xN,xN))以及特征函数 f i ( x , y ) f_i(x,y) fi(x,y),i=1,2,…,n,最大熵模型的学习等价于约束最优化问题
在这里插入图片描述
按照最优化问题的习惯,将求最大值问题改写为等价的求最小值问题:
在这里插入图片描述
求解约束最优化问题(6.14)~(6.16),所得出的解,就是最大熵模型学习的解。
(推到过程详见书 P 99 P_{99} P99

6.2.4 极大似然估计

从以上最大熵模型学习中可以看出,最大熵模型是由式(6.22)、式(6.23)表示的条件概率分布。

下面证明对偶函数的极大化等价于最大熵模型的极大似然估计

已知训练数据的经验概率分布 p ^ ( X , Y ) \hat{p}(X,Y) p^(X,Y),条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX)对数似然函数表示为:
在这里插入图片描述
当条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX)是最大熵模型(6.22)和(6.23)时,对数似然函数 L P ^ ( P w ) L_{\hat{P}}(P_w) LP^(Pw)为:

在这里插入图片描述
再看对偶函数$ \Psi(w)$。由式(6.17)及式(6.20)可得
在这里插入图片描述
比较式(6.26)和式(6.27),可得

Ψ ( w ) = L p ^ ( P w ) \Psi(w)=L_{\hat{p}}(P_w) Ψ(w)=Lp^(Pw)

既然对偶函数 Ψ ( w ) \Psi(w) Ψ(w)等价于对数似然函数 L p ^ ( P w ) L_{\hat{p}}(P_w) Lp^(Pw),于是证明了最大熵模型学习中的对偶函数极大化等价于最大熵模型的极大似然估计这一事实。

这样,最大熵模型的学习问题就转换为具体求解对数似然函数极大化或对偶函数极大化的问题。

可以将最大熵模型写成更一般的形式。
在这里插入图片描述
最大熵模型与逻辑斯谛回归模型有类似的形式,它们又称为对数线性模型(log linear model)。模型学习就是在给定的训练数据条件下对模型进行极大似然估计或正则化的极大似然估计。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/369826.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

远程桌面时连接不上远程计算机是什么问题

在服务器上搭建网络程序时,我们经常会有需要远程连接上服务器进行相关操作,有些用户在远程桌面的时候,有时会有遇上无法连接到远程计算机的情况。 很多用户都曾遇到在远程桌面时出现“未启用对服务器的远程访问”、“远程计算机已关闭”、“…

vit细粒度图像分类(九)RAMS-Trans学习笔记

1.摘要 在细粒度图像识别(FGIR)中,区域注意力的定位和放大是一个重要因素,基于卷积神经网络(cnn)的方法对此进行了大量探索。近年来发展起来的视觉变压器(ViT)在计算机视觉任务中取得了可喜的成果。与cnn相比,图像序列化是一种全新的方式。然…

【开源】SpringBoot框架开发大学计算机课程管理平台

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 实验课程档案模块2.2 实验资源模块2.3 学生实验模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 实验课程档案表3.2.2 实验资源表3.2.3 学生实验表 四、系统展示五、核心代码5.1 一键生成实验5.2 提交实验5.3 批阅实…

Mac安装Homebrew+MySQL+Redis+Nginx+Tomcat等

Mac安装HomebrewMySQLRedisNginxTomcat等 文章目录 Mac安装HomebrewMySQLRedisNginxTomcat等一、Mac安装Mysql 8①:下载②:安装③:配置环境变量④:外部连接测试 二、Mac安装Redis和可视化工具①:安装Redis01&#xff1…

c++用户管理信息(类指针数组)

用户管理信息--类指针数组 类示意图select类示意图MyIterator示意图VetorCstu示意图ClassStu示意图 项目源代码selectselect.hselect.cpp MyIteratorMyIterator.hMyIterator.cpp VetorCstuVetorCstu.hVetorCstu.cpp ClassStuClassStu.hClassStu.cpp main源码 总结---数组管理指…

Linux Shell命令系列--basename获取基本文件名

一、目的 学习linux shell编程的第一步就是熟悉linux的各种命令的使用,本篇开始逐次介绍一些常用linux shell命令。 今天我们来讲解basename命令的使用。 二、介绍 1、基本概念 basename命令首先去除字符串末尾多余的斜杠(如果有的话)&#…

【AG32VF407】国产MCU+FPGA Verilog双边沿检测输出方波

视频讲解 [AG32VF407]国产MCUFPGA Verilog双边沿检测输出方波 实验过程 本次使用使用AG32VF407开发板中的FPGA,使用双clk的双边沿进行检测,同步输出方波 同时可以根据输出的方波检测clk的频率,以及双clk的相位关系,如下为verilog…

【c++】vector用法详解

vector用法详解 vector定义vector容器的构造函数vector容器内元素的访问1.通过下标 [ ]来访问2.通过迭代器来访问3.通过范围for来访问 vector常用函数的用法解析1.size()2.clear()3.capacity()4.reserve()5.resize()6.shrink_to_fit()7.pop_back()8.push_back()9.erase()10.in…

父类之王“Object”类和内部类

👨‍💻作者简介:👨🏻‍🎓告别,今天 📔高质量专栏 :☕java趣味之旅 欢迎🙏点赞🗣️评论📥收藏💓关注 💖衷心的希…

ES6-let

一、基本语法 ES6 中的 let 关键字用于声明变量,并且具有块级作用域。 - 语法:let 标识符;let 标识符初始值; - 规则:1.不能重复声明let不允许在相同作用域内重复声明同一个变量2.不存在变量提升在同一作用域内,必须先声明才能试…

企查查headers动态加密参数(附代码)

声明 本文以教学为基准、本文提供的可操作性不得用于任何商业用途和违法违规场景。 本人对任何原因在使用本人中提供的代码和策略时可能对用户自己或他人造成的任何形式的损失和伤害不承担责任。 如有侵权,请联系我进行删除。 这里只是我分析的分析过程,以及一些重要点的记录…

c语言:贪吃蛇的实现

目录 贪吃蛇实现的技术前提: Win32 API介绍 控制台程序(console) 控制台屏幕上的坐标 GetStdHandle GetConsoleCursorInfo CONSOLE_CURSOR_INFO SetConsoleCursorInfo SetConsoleCursorPosition GetAsyncKeyState 宽字符的打印 …

企业在什么情况下需要一款固定资产管理系统?

在现代商业环境中,企业的固定资产是其运营和发展的重要基础。然而,许多企业在固定资产管理方面面临着挑战,如信息不准确、效率低下和资源浪费等问题。为了解决这些问题,越来越多的企业开始意识到引入一款固定资产管理系统的重要性…

BLIP-2:低计算视觉-语言预训练大模型

BLIP-2 BLIP 对比 BLIP-2BLIPBLIP-2如何在视觉和语言模型之间实现有效的信息交互,同时降低预训练的计算成本?视觉语言表示学习视觉到语言的生成学习模型架构设计 总结主要问题: 如何在计算效率和资源有限的情况下,有效地结合冻结的图像编码器…

【NTN 卫星通信】基于NTN的多3GPP连接应用场景

1 概述 同时聚合两条3GPP接入链路,其中一条为非地面网络,可以提供以下5G业务使能,尤其适用于带宽有限或接入链路不可靠的服务不足地区:   -扩展流动宽频   -超可靠的服务通信 如技术报告38.821所述,若干服务场景(例如在偏远地…

时间序列预测 —— ConvLSTM 模型

时间序列预测 —— ConvLSTM 模型 时间序列预测是一项重要的任务,ConvLSTM(卷积长短时记忆网络)是深度学习领域中用于处理时序数据的强大工具之一。本文将介绍 ConvLSTM 的理论基础、优缺点,与其他常见时序模型(如 LS…

golang开发window环境搭建

1.本人开发环境:window10,idea2020.1.3 2.Go语言环境版本1.5.1 2.1. go语言插件 下载地址 csdn - 安全中心 2.2下载安装 3.idea配置go环境 4.创建go项目 、5.运行

ShardingSphere 5.x 系列【4】产品介绍

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 3.1.0 本系列ShardingSphere 版本 5.4.0 源码地址:https://gitee.com/pearl-organization/study-sharding-sphere-demo 文章目录 1. 简介2. 核心特性2.1 数据分片2…

空中加油3D可视化:引领航空领域的新革命

随着科技的日新月异,我们生活的方方面面都在发生着深刻的变化。而在航空领域,3D可视化技术正在引领新的革命。它不仅为飞行员提供了一种全新的视角,更在保障飞行安全、提高飞行效率方面发挥着不可替代的作用。 在传统的空中加油中&#xff0c…

无人机遥感技术在地质灾害监测应用分析,多旋翼无人机应急救援技术探讨

地质灾害是指在地球的发展演变过程中, 由各种自然地质作用和人类活动所形成的灾害性地质事件。给人民的生命和财产安全带来严重威胁,因此有必要开展地质灾害预测预报、灾害应急和风险区划 遥感技术的快速发展为我们提供了一种获取实时灾害信息的可靠手段…