[每周一更]-(第86期):NLP-实战操作-文本分类

在这里插入图片描述

NLP文本分类的应用场景

医疗领域 - 病历自动摘要:
应用: 利用NLP技术从医疗文档中自动生成病历摘要,以帮助医生更快速地了解患者的状况。

法律领域 - 法律文件分类:
应用: 使用文本分类技术自动分类法律文件,例如判决书或法案,以提高法律专业人员的工作效率。

金融领域 - 财报情感分析:
应用: 运用情感分析技术分析财务报告中的文本,以评估公司财务状况并预测市场走势。

教育领域 - 学生作文评分:
应用: 利用NLP技术对学生的作文进行自动评分,为教育工作者提供更快速和客观的评估。

社交媒体 - 主题趋势分析:
应用: 通过对社交媒体上的文本进行主题趋势分析,了解公众对不同话题的看法和讨论。

科研 - 文献关键词提取:
应用: 使用NLP技术从科学文献中提取关键词,帮助研究人员更好地理解文献内容和主题。

电商 - 产品评论情感分析:
应用: 分析电商平台上产品的用户评论,了解用户对产品的满意度和提取改进意见。

旅游 - 多语言翻译服务:
应用: 提供旅游信息的多语言翻译服务,帮助国际游客更好地理解目的地信息。

政府 - 公共舆情监测:
应用: 利用NLP技术监测社会对政府政策的反馈,帮助政府更好地了解公众意见。

体育 - 体育新闻自动摘要:
应用: 利用NLP技术自动生成体育新闻的摘要,提供用户更简洁的阅读体验。

娱乐 - 影视剧本分析:
应用: 分析影视剧本中的对话和情节,了解不同类型影视作品的特点和趋势。

科技 - 代码注释生成:
应用: 使用NLP技术为编程代码自动生成注释,帮助程序员更好地理解和维护代码。

实战操作

中文文本分类

在NLP中进行中文文本分类的实战操作通常包括以下步骤:

准备数据、文本预处理、特征提取、模型训练和评估。

下面是一个简单的中文文本分类实战示例,使用Python和scikit-learn库:

scikit-learn是一个机器学习库,提供了丰富的工具用于特征提取、模型训练、模型评估等。

  1. 准备数据:

    • 收集并准备标注好的中文文本数据,包含文本内容和对应的类别标签。
  2. 文本预处理:

    • 对文本进行清洗,去除停用词、标点符号等。
    • 中文分词,将文本切分成词语。
    • 可以使用jieba分词库进行中文分词。
    import jieba
    
    def chinese_text_preprocessing(text):
        # 分词
        words = jieba.cut(text)
        # 过滤停用词等
        filtered_words = [word for word in words if word not in stop_words]
        return " ".join(filtered_words)
    
  3. 特征提取:

    • 将文本表示为机器学习模型可以理解的特征,常用的方法包括词袋模型、TF-IDF等。
    from sklearn.feature_extraction.text import TfidfVectorizer
    
    # 示例文本
    texts = ["这是一个正面的例子。", "这个例子带有负面情感。", ...]
    labels = [1, 0, ...]
    
    # 中文文本预处理
    preprocessed_texts = [chinese_text_preprocessing(text) for text in texts]
    
    # TF-IDF特征提取
    vectorizer = TfidfVectorizer()
    X = vectorizer.fit_transform(preprocessed_texts)
    
  4. 模型训练:

    • 使用机器学习算法训练文本分类模型,常见的算法包括朴素贝叶斯、支持向量机、深度学习模型等。
    
    from sklearn.model_selection import train_test_split
    from sklearn.naive_bayes import MultinomialNB
    from sklearn.metrics import accuracy_score, classification_report
    
    # 划分训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)
    
    # 训练朴素贝叶斯分类器
    classifier = MultinomialNB()
    classifier.fit(X_train, y_train)
    
  5. 模型评估:

    • 使用测试集评估模型性能。
    
    # 预测和评估
    predictions = classifier.predict(X_test)
    accuracy = accuracy_score(y_test, predictions)
    print(f"Accuracy: {accuracy}")
    print(classification_report(y_test, predictions))
    

以上是一个简单的中文文本分类的实战示例,

实际应用中可能需要更多的数据预处理、特征工程、模型调优等步骤。同时,针对不同的任务和数据集,可以选择不同的模型和算法。在处理中文文本时,特别需要注意分词和停用词的处理,以保证文本特征的质量。

其他常见分类库

在NLP文本分类的实际应用中,通常会用到一系列常用的Python类库,以便方便地进行文本处理、特征提取、模型训练和评估等任务。

以下是一些常用的NLP相关类库(不包含上述的jieba、scikit-learn):

  1. NLTK (Natural Language Toolkit):

    • NLTK是一个广泛使用的NLP库,提供了各种工具和资源,包括分词、词性标注、命名实体识别、语料库等。
    pythonCopy code
    import nltk
    nltk.download('punkt')
    from nltk.tokenize import word_tokenize
    
  2. TextBlob:

  • TextBlob是一个简单的NLP库,包含一些方便的工具,如情感分析、词性标注等。
pythonCopy code
from textblob import TextBlob
  1. spaCy:
  • spaCy是一个现代的NLP库,具有高效的分词、词性标注、命名实体识别等功能。

import spacy
  1. TensorFlow和PyTorch:
  • TensorFlow和PyTorch是两个主流的深度学习框架,用于构建和训练深度学习模型。

import tensorflow as tf
import torch

在实际应用中,这些类库的组合和使用方式会根据具体情况有所不同。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/366888.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【网络安全实验】snort实现高级IDS

注:本实验分别使用kali和CentOS6.8进行测试,可惜的是使用kali进行实验过程中遇到了困难,未能完成完整实验,而使用CentOS6.8成功完成了完整实验。 实验中用到的软件: https://download.csdn.net/download/weixin_5255…

Spring-集成Web

一、引子 前面我们在Spring集成Junit中为读者引出了Spring善于集成其它框架的优势,而Spring项目不可能仅限于小范围的某个方法的测试,终究会落脚于Web项目上。于是,我们就从这里正式进入Spring集成Web的话题。由于笔者会从原生的Java Web开发…

【Spark实践6】特征转换FeatureTransformers实践Scala版--补充算子

本节介绍了用于处理特征的算法,大致可以分为以下几组: 提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection&…

前端常见标签

<li> (List Item)&#xff1a;定义列表中的一个项目&#xff08;项&#xff09; <ul> (Unordered List)&#xff1a;定义无序列表 <ol> (Ordered List)&#xff1a;定义有序列表 <a> (Anchor Tag)&#xff1a;定义超链接 <ul><li>苹…

关于华为应用市场上架,申请权限未告知目的被驳回问题的简单处理方式

关于华为应用市场上架过程中出现的【您的应用在运行时&#xff0c;未同步告知权限申请的使用目的&#xff0c;向用户索取&#xff08;存储、拍照&#xff09;等权限&#xff0c;不符合华为应用市场审核标准。】 使用方式&#xff1a; 1、引入 import permision from "/m…

paddle环境安装

一、paddle环境安装 如pytorch环境安装一样&#xff0c;首先在base环境下创建一个新的环境来安装paddlepaddle框架。首先创建一个新的环境名叫paddle。执行如下命令。 conda create -n paddle python3.8创建好了名叫paddle这个环境以后&#xff0c;进入到这个环境中&#xff…

【Java 数据结构】排序

排序算法 1. 排序的概念及引用1.1 排序的概念1.2 常见的排序算法 2. 常见排序算法的实现2.1 插入排序2.1.1 直接插入排序2.1.2 希尔排序( 缩小增量排序 ) 2.2 选择排序2.2.1 直接选择排序2.2.2 堆排序 2.3 交换排序2.3.1冒泡排序2.3.2 快速排序2.3.3 快速排序非递归 2.4 归并排…

【Linux C | 网络编程】netstat 命令图文详解 | 查看网络连接、查看路由表、查看统计数据

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

rust gui开发框架选择

作为一个系统编程强大语言&#xff0c;怎么能少得了图形界面的开发 实际上写这篇前我也不知道&#xff0c;于是我问了ai大模型&#xff0c;文心3.5和chatgpt4.0 答案实际上不能满意&#xff0c;最后我做了下筛选 参考博文&#xff1a; rust开发环境配置&#xff1a;链接 一、…

如何选择最适合的服务器

许多朋友想做一些网站&#xff0c;应用&#xff0c;游戏&#xff0c;小程序等等&#xff0c;都需要接触一个基础&#xff0c;就是服务器。服务器相当于一台24小时不关机的联网电脑&#xff0c;浏览网页或者应用相当于用户在访问这台电脑里的文件。那么如何选择最适合自己的服务…

[C++]类和对象(中)

一:类的六个默认成员函数 如果一个类中什么成员都没有&#xff0c;简称为空类。空类中并不是什么都没有&#xff0c;任何类在什么都不写时&#xff0c;编译器会自动生成以下6个默认成员函数。默认成员函数&#xff1a;用户没有显式实现&#xff0c;编译器会生成的成员函数称为…

Android Studio非UI线程修改控件——定时器软件

目录 一、UI界面设计 1、UI样式 2、XML代码 二、功能编写 1、定义 2、实现方法 3、功能实现 一、UI界面设计 1、UI样式 2、XML代码 <?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android…

Interpolator:在Android中方便使用一些常见的CubicBezier贝塞尔曲线动画效果

说明 方便在Android中使用Interpolator一些常见的CubicBezier贝塞尔曲线动画效果。 示意图如下 import android.view.animation.Interpolator import androidx.core.view.animation.PathInterpolatorCompat/*** 参考* android https://yisibl.github.io/cubic-bezier* 实现常…

【AI数字人-论文】Geneface论文

文章目录 前言pipelineaudio-to-motionMotion domain adaptation可视化 Motion-to-imageHead-NeRFTorso-NeRF 结果对比 前言 语音驱动的说话人视频合成旨在根据一段输入的语音&#xff0c;合成对应的目标人脸说话视频。高质量的说话人视频需要满足两个目标&#xff1a; &#…

算法基础,一维,二维前缀和差分详解

目录 1.前缀和 1.一维前缀和 例题&#xff1a;【模板】前缀和 2.二维前缀和 例题&#xff1a;【模板】二维前缀和 2.差分 1.一维差分 1.性质&#xff1a;d[i]的前缀和等于a[i] 2.性质&#xff1a;后缀区间修改 例题&#xff1a;【模板】差分 2.二维差分 例题&#x…

[.NET] 查询当前已安装所有 Win32 与 UWP 应用

为了获取当前设备用户已安装的所有应用程序, 一般来讲有两种方案. 一种是通过查询 “shell:AppsFolder” 目录下所有项, 一种是从开始菜单中获取所有快捷方式, 然后加上查询所有已安装的 UWP 应用, 最后得到总列表. 如需代码参考, 请看 github.com/SlimeNull/WindowsAppsQuery …

Opencv(C++)学习 之RV1126平台的OPENCV交叉编译

本文特点&#xff1a;网上已经有了很多opencv移植RV1106的文章&#xff0c;本文主要记录基于cmake-gui编译&#xff0c;碰到的报错&#xff0c;及解决报错问题的方法&#xff0c;同时简单总结一些配置项相关的知识。 一、环境&#xff1a; ubuntu18 x64 RV1126交叉编译工具链 …

用HTML5 + JavaScript实现下雪效果

用HTML5 JavaScript实现下雪效果 下面是用HTML5 JavaScript实现下雪效果示例&#xff0c;展示了如何使用 HTML5 的 <canvas> 元素以及 JavaScript 来创建下雪效果。效果如下&#xff1a; 源码如下&#xff1a; <!DOCTYPE html> <html lang"en">…

逸学区块链【solidity】真随机数

参考Get a Random Number | Chainlink Documentation 但是很贵&#xff0c;价格 Gas Price&#xff1a;当前gas价格&#xff0c;根据网络状况而波动。Callback gas &#xff1a;返回您所请求的随机值时&#xff0c;回调请求消耗的gas 量。验证gas &#xff1a;量gas 用于验证…

应用层协议 ——— HTTP协议

应用层协议 ——— HTTP协议 HTTP简介认识URL二、登录信息三、服务器地址四、服务器端口号五、带层次的文件路径六、查询字符串七、片段标识符urlencode和urldecodeHTTP协议格式HTTP请求协议格式HTTP的方法HTTP的状态码HTTP常见的HeaderHTTPS VS HTTP对称加密 VS 非对称加密 HT…