pinctrl/gpio子系统(2)-gpio子系统介绍及驱动源码简单分析

文章目录

  • 1.gpio子系统api
  • 2.gpio相关of函数
  • 3.gpio子系统驱动分析
    • 3.1设备树信息分析
    • 3.2驱动程序分析
  • 4.最后

1.gpio子系统api

这里的api都是基于gpio的编号去进行操作
1)gpio_request,用于申请一个GPIO管脚
int gpio_request(unsigned gpio, const char *label)
gpio:要申请的gpio标号
label:gpio名字

2)gpio_free,用于释放gpio
void gpio_free(unsigned gpio)

3)gpio_direction_input,设置gpio为输入
int gpio_direction_input(unsigned gpio)

4) gpio_direction_output ,设置gpio为输出
int gpio_direction_output(unsigned gpio, int value)

5) gpio_get_value ,获取gpio值
#define gpio_get_value __gpio_get_value int __gpio_get_value(unsigned gpio)

6) gpio_set_value ,设置gpio值
#define gpio_set_value __gpio_set_value void __gpio_set_value(unsigned gpio, int value)

2.gpio相关of函数

1) of_gpio_named_count ,获取设备树某属性定义了几个gpio信息
int of_gpio_named_count(struct device_node *np, const char *propname)
np:设备节点
propname:要统计的gpio属性

2) of_gpio_count ,获取gpios属性的gpio数量
int of_gpio_count(struct device_node *np)
np:设备节点

**3) of_get_named_gpio , 获取gpio编号,**将设备树中类似 <&gpio5 7 GPIO_ACTIVE_LOW> 的属性信息转换为对应的 GPIO 编号,用于gpio子系统api操作
int of_get_named_gpio(struct device_node *np, const char *propname, int index)
np:设备节点
propname:要获取的gpio信息属性名
index:gpio索引

3.gpio子系统驱动分析

3.1设备树信息分析

先以 SD卡为入口,分析gpio子系统的设备树相关信息。

1)市面上常见的SD卡引脚图如下:
image.png

2)SD卡连接在usdhc1接口上,而usdhc1的设备树节点信息如下:

&usdhc1 {
    pinctrl-names = "default", "state_100mhz", "state_200mhz";
    pinctrl-0 = <&pinctrl_usdhc1>;
    pinctrl-1 = <&pinctrl_usdhc1_100mhz>;
    pinctrl-2 = <&pinctrl_usdhc1_200mhz>;
    cd-gpios = <&gpio1 19 GPIO_ACTIVE_LOW>;
    keep-power-in-suspend;
    enable-sdio-wakeup;
    vmmc-supply = <&reg_sd1_vmmc>;
    no-1-8-v;
    status = "okay";
};

pinctrl-names:定义了三种状态,分别是"default", “state_100mhz”, “state_200mhz”。
“default” =》 pinctrl-0 =》pinctrl_usdhc1
“state_100mhz” =》 pinctrl-1 =》pinctrl_usdhc1_100mhz
“state_200mhz” =》 pinctrl-2 =》pinctrl_usdhc1_200mhz

其中pinctrl_usdhc1对应的引脚配置信息如下

pinctrl_usdhc1: usdhc1grp {
    fsl,pins = <
        MX6UL_PAD_SD1_CMD__USDHC1_CMD     0x17059
        MX6UL_PAD_SD1_CLK__USDHC1_CLK     0x10071
        MX6UL_PAD_SD1_DATA0__USDHC1_DATA0 0x17059
        MX6UL_PAD_SD1_DATA1__USDHC1_DATA1 0x17059
        MX6UL_PAD_SD1_DATA2__USDHC1_DATA2 0x17059
        MX6UL_PAD_SD1_DATA3__USDHC1_DATA3 0x17059
    >;
};

可以看出是将SD卡的几个引脚分别进行了复用,其中没有关于CD引脚的配置,CD引脚用于检测SD卡是否插入。
而cd-gpios = <&gpio1 19 GPIO_ACTIVE_LOW>; 设置CD脚,为GPIO1组的19号引脚,GPIO_ACTIVE_LOW代表低电平有效,既然如此,那么代表CD引脚使用的是GPIO1_IO19,查看设备树文件,其中可以找到如下:

pinctrl_hog_1: hoggrp-1 {
    fsl,pins = <
        MX6UL_PAD_UART1_RTS_B__GPIO1_IO19	0x17059 /* SD1 CD */
        MX6UL_PAD_GPIO1_IO05__USDHC1_VSELECT	0x17059 /* SD1 VSELECT */
        MX6UL_PAD_GPIO1_IO00__ANATOP_OTG1_ID    0x13058 /* USB_OTG1_ID */
    >;
};

arch/arm/boot/dts/imx6ull.dtsi中,可以看到

gpio1: gpio@0209c000 {
    compatible = "fsl,imx6ul-gpio", "fsl,imx35-gpio";
    reg = <0x0209c000 0x4000>;
    interrupts = <GIC_SPI 66 IRQ_TYPE_LEVEL_HIGH>,
             <GIC_SPI 67 IRQ_TYPE_LEVEL_HIGH>;
    gpio-controller;
    #gpio-cells = <2>;
    interrupt-controller;
    #interrupt-cells = <2>;
};

其中gpio1的地址为0x0209c000,在寄存器手册中可以看到各寄存器地址。
image.png
这里基本就看懂一个usb驱动的设备树信息啦~接下来可以继续分析驱动函数

3.2驱动程序分析

以设备树中的gpio1节点为入口,分析gpio子系统驱动代码。

其中arch/arm/boot/dts/imx6ull.dtsi的 gpio1节点内容如下:

gpio1: gpio@0209c000 {
    compatible = "fsl,imx6ul-gpio", "fsl,imx35-gpio";
    reg = <0x0209c000 0x4000>;
    interrupts = <GIC_SPI 66 IRQ_TYPE_LEVEL_HIGH>,
             <GIC_SPI 67 IRQ_TYPE_LEVEL_HIGH>;
    gpio-controller;
    #gpio-cells = <2>;
    interrupt-controller;
    #interrupt-cells = <2>;
};

使用compatible属性去匹配OF表,全局搜索可以看到fsl,imx35-gpio对应的of信息在drivers/gpio/gpio-mxc.c下,内容为:

static const struct of_device_id mxc_gpio_dt_ids[] = {
	{ .compatible = "fsl,imx1-gpio", .data = &mxc_gpio_devtype[IMX1_GPIO], },
	{ .compatible = "fsl,imx21-gpio", .data = &mxc_gpio_devtype[IMX21_GPIO], },
	{ .compatible = "fsl,imx31-gpio", .data = &mxc_gpio_devtype[IMX31_GPIO], },
	{ .compatible = "fsl,imx35-gpio", .data = &mxc_gpio_devtype[IMX35_GPIO], },
	{ /* sentinel */ }
};

当compatible属性匹配的时候,将调用 .probe 函数,也就是mxc_gpio_probe函数

static struct platform_driver mxc_gpio_driver = {
	.driver		= {
		.name	= "gpio-mxc",
		.of_match_table = mxc_gpio_dt_ids,
	},
	.probe		= mxc_gpio_probe,
	.id_table	= mxc_gpio_devtype,
};

mxc_gpio_probe函数源码如下:

static int mxc_gpio_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct mxc_gpio_port *port;
	struct resource *iores;
	int irq_base;
	int err;

	mxc_gpio_get_hw(pdev);

	port = devm_kzalloc(&pdev->dev, sizeof(*port), GFP_KERNEL);
	if (!port)
		return -ENOMEM;

	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	port->base = devm_ioremap_resource(&pdev->dev, iores);
	if (IS_ERR(port->base))
		return PTR_ERR(port->base);

	port->irq_high = platform_get_irq(pdev, 1);
	port->irq = platform_get_irq(pdev, 0);
	if (port->irq < 0)
		return port->irq;

	/* disable the interrupt and clear the status */
	writel(0, port->base + GPIO_IMR);
	writel(~0, port->base + GPIO_ISR);

	if (mxc_gpio_hwtype == IMX21_GPIO) {
		/*
		 * Setup one handler for all GPIO interrupts. Actually setting
		 * the handler is needed only once, but doing it for every port
		 * is more robust and easier.
		 */
		irq_set_chained_handler(port->irq, mx2_gpio_irq_handler);
	} else {
		/* setup one handler for each entry */
		irq_set_chained_handler(port->irq, mx3_gpio_irq_handler);
		irq_set_handler_data(port->irq, port);
		if (port->irq_high > 0) {
			/* setup handler for GPIO 16 to 31 */
			irq_set_chained_handler(port->irq_high,
						mx3_gpio_irq_handler);
			irq_set_handler_data(port->irq_high, port);
		}
	}

	err = bgpio_init(&port->bgc, &pdev->dev, 4,
			 port->base + GPIO_PSR,
			 port->base + GPIO_DR, NULL,
			 port->base + GPIO_GDIR, NULL, 0);
	if (err)
		goto out_bgio;

	port->bgc.gc.to_irq = mxc_gpio_to_irq;
	port->bgc.gc.base = (pdev->id < 0) ? of_alias_get_id(np, "gpio") * 32 :
					     pdev->id * 32;

	err = gpiochip_add(&port->bgc.gc);
	if (err)
		goto out_bgpio_remove;

	irq_base = irq_alloc_descs(-1, 0, 32, numa_node_id());
	if (irq_base < 0) {
		err = irq_base;
		goto out_gpiochip_remove;
	}

	port->domain = irq_domain_add_legacy(np, 32, irq_base, 0,
					     &irq_domain_simple_ops, NULL);
	if (!port->domain) {
		err = -ENODEV;
		goto out_irqdesc_free;
	}

	/* gpio-mxc can be a generic irq chip */
	mxc_gpio_init_gc(port, irq_base);

	list_add_tail(&port->node, &mxc_gpio_ports);

	return 0;

out_irqdesc_free:
	irq_free_descs(irq_base, 32);
out_gpiochip_remove:
	gpiochip_remove(&port->bgc.gc);
out_bgpio_remove:
	bgpio_remove(&port->bgc);
out_bgio:
	dev_info(&pdev->dev, "%s failed with errno %d\n", __func__, err);
	return err;
}

mxc_gpio_probe函数中有几个比较重要的函数:
1)**mxc_gpio_get_hw **:获取gpio寄存器组,拿到的值其实就是gpio寄存器组的各个值

static void mxc_gpio_get_hw(struct platform_device *pdev)
{
	const struct of_device_id *of_id =
			of_match_device(mxc_gpio_dt_ids, &pdev->dev);
	enum mxc_gpio_hwtype hwtype;

	if (of_id)
		pdev->id_entry = of_id->data;
	hwtype = pdev->id_entry->driver_data;

	if (mxc_gpio_hwtype) {
		/*
		 * The driver works with a reasonable presupposition,
		 * that is all gpio ports must be the same type when
		 * running on one soc.
		 */
		BUG_ON(mxc_gpio_hwtype != hwtype);
		return;
	}

	if (hwtype == IMX35_GPIO)
		mxc_gpio_hwdata = &imx35_gpio_hwdata;
	else if (hwtype == IMX31_GPIO)
		mxc_gpio_hwdata = &imx31_gpio_hwdata;
	else
		mxc_gpio_hwdata = &imx1_imx21_gpio_hwdata;

	mxc_gpio_hwtype = hwtype;
}

.........................
.........................
static struct mxc_gpio_hwdata imx1_imx21_gpio_hwdata = {
    .dr_reg		= 0x1c,
    .gdir_reg	= 0x00,
    .psr_reg	= 0x24,
    .icr1_reg	= 0x28,
    .icr2_reg	= 0x2c,
    .imr_reg	= 0x30,
    .isr_reg	= 0x34,
    .edge_sel_reg	= -EINVAL,
    .low_level	= 0x03,
    .high_level	= 0x02,
    .rise_edge	= 0x00,
    .fall_edge	= 0x01,
};

image.png

2) platform_get_resource:获取设备树中内存资源信息,其实就是reg属性值
3) devm_ioremap_resource :内存映射,寄存器地址映射出虚拟地址
4) platform_get_irq :获取中断号

其中mxc_gpio_port结构体内容如下:

struct mxc_gpio_port {
    struct list_head node;
    void __iomem *base;
    int irq;
    int irq_high;
    struct irq_domain *domain;
    struct bgpio_chip bgc;
    u32 both_edges;
};

其中 gpio_chip 中包含GPIO的操作函数,定义好这些函数之后, 调用函数gpiochip_add向Linux内核注册gpio_chip, 也就是 port->bgc.gc 注册完成以后我们就可以在驱动中使用 gpiolib 提供的各个 API 函数 。
这就是驱动源码中,注册gpio子系统API的过程,注册好之后,便可以在编写驱动的时候使用gpio操作的API。

4.最后

哈喽~我是徐章鑫,沪漂嵌入式开发工程师一枚,立志成为嵌入式全栈开发工程师,成为优秀博客创作者,共同学习进步。
以上代码全部放在我私人的github地址,其中有许多自己辛苦敲的例程源码,供大家参考、批评指正,有兴趣还可以直接提patch修改我的仓库~:
https://github.com/Xuzhangxin
觉得不错的话可以点个收藏和star~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/366297.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

前缀和 差分

差分和前缀和都是算法里边比较重要的知识点&#xff0c;不过学习的难度并不高&#xff0c;这篇文章会讲解相关的内容。 1. 前缀和怎么玩 1&#xff09;一维前缀和 在该数之前&#xff0c;包括该数的所有数之和&#xff0c;有点类似高中学的数列的前n项和Sn。 2&#xff09;二维…

【sentinel流量卫兵搭建与微服务整合】

sentinel流量卫兵搭建与微服务整合 搭建sentinel dashboard控制台微服务整合 搭建sentinel dashboard控制台 1、下载 官网链接 由于官网github网络原因&#xff0c;导致长时间下载失败。 网盘链接 网盘提取码&#xff1a;dwgj 2、运行 将下载jar包放在任意非中文、不包含特殊…

专有云 ABC Stack 联合银联商务打造金融级云平台,入选《2024 央国企上云用云典型案例》

2024 年 1 月&#xff0c;在中国信通院《2024 央国企上云用云典型案例》征集中&#xff0c;百度智能云携手银联商务提交的《银联商务金融级云平台》成功入选「上云用云解决方案典型案例」。 在国家「1 朵央企云统领&#xff0c;N 朵行业云共载&#xff0c;M 朵私有云共生」的央…

jenkins 下载插件sentry-cli失败 证书过期

现状 npm set ENTRYCLI_CDNURLhttps://cdn.npm.taobao.org/dist/sentry-cli npm set sentrycli_cdnurlhttps://cdn.npm.taobao.org/dist/sentry-cli 原因是npm原域名停止解析&#xff0c;在访问上面sentry-cli的cdn资源的时候 证书过期无法下载。 解决&#xff1a; 替换证书过期…

BL808 Linux支持WIFI

BL808芯片介绍 BL808是高度集成的AIoT芯片组&#xff0c;具有Wi-Fi/BT/BLE/Zigbee等无线互联单元&#xff0c;包含多个 CPU 以及音频编码译码器、视频编码译码器和 AI 硬件加速器&#xff0c;适用于各种高性能和低功耗应用领域。 外围接口包括 USB2.0、 Ethernet、 SD/MMC、 …

【python3.8 pre-commit报错】记录pre-commit install报错

一、问题 在执行pre-commit install --allow-missing-config命令时&#xff0c;报错 Traceback (most recent call last):File "C:\ProgramData\Anaconda3\envs\py38\lib\runpy.py", line 192, in _run_module_as_mainreturn _run_code(code, main_globals, None,F…

【Linux】 Linux编译器-gcc/g++使用

&#x1f497;个人主页&#x1f497; ⭐个人专栏——Linux学习⭐ &#x1f4ab;点击关注&#x1f929;一起学习C语言&#x1f4af;&#x1f4ab; 目录 导读1. Linux编译器-gcc/g使用1.1 引入1.2 初识gcc/g1.3 程序运行的四个阶段1.3.1 预处理1.3.2 编译1.3.3 汇编1.3.4 链接 1.…

Git―基本操作

Git ⛅认识 Git⛅安装 GitCentos(7.6)Ubuntu ⛅Git―基本操作创建本地仓库&#x1f342;配置本地仓库&#x1f342;工作区, 暂存区, 版本库&#x1f342;版本库工作区 添加文件&#x1f342;查看文件&#x1f342;修改文件&#x1f342;版本回退&#x1f342;☃️案例 撤销修改…

【Java 数据结构】二叉树

二叉树 1. 树型结构&#xff08;了解&#xff09;1.1 概念1.2 概念&#xff08;重要&#xff09;1.3 树的表示形式&#xff08;了解&#xff09;1.4 树的应用 2. 二叉树&#xff08;重点&#xff09;2.1 概念2.2 两种特殊的二叉树2.3 二叉树的性质2.4 二叉树的存储2.5 二叉树的…

Error: Projects must list all files or use an ‘include‘ pattern.

博主介绍&#xff1a;✌全网粉丝5W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经验…

汽车软件开发模式的5个特点

汽车软件开发属于较为复杂的系统工程&#xff0c;经常让来自不同知识背景的工程师在观点交锋时出现分歧。在解决复杂性和对齐讨论基准时&#xff0c;可以通过勾勒出讨论对象最关键的几个特征来树立典型概念。本文旨在通过5个典型特点的抽取&#xff0c;来勾勒出汽车软件开发模式…

023 for循环详解

什么是for循环 // 练习1 int odd 0; int even 0; for (int i 0; i < 100; i) {if (i % 2 0) {even i;} else {odd i;} } System.out.println("奇数和为:" odd ",偶数和为:" even);// 练习2 for (int i 1; i < 1000; i) {if (i % 5 0) {Sy…

使用STM32 DMA实现高效数据传输的设计与优化

使用STM32的DMA功能可以有效地实现高效的数据传输。在下面的解释中&#xff0c;我将介绍如何设计和优化使用STM32 DMA进行高效数据传输的方法。同时&#xff0c;我将提供一些示例代码来帮助您理解和实践。 ✅作者简介&#xff1a;热爱科研的嵌入式开发者&#xff0c;修心和技术…

决策树的相关知识点

&#x1f4d5;参考&#xff1a;ysu老师课件西瓜书 1.决策树的基本概念 【决策树】&#xff1a;决策树是一种描述对样本数据进行分类的树形结构模型&#xff0c;由节点和有向边组成。其中每个内部节点表示一个属性上的判断&#xff0c;每个分支代表一个判断结果的输出&#xff…

2017年苏州大学837复试机试C/C++

2017年苏州大学复试机试 要求 要求用C/C编程&#xff1b;对程序中必要的地方进行注释。上机规则 请在电脑桌面上新建一个文件夹文件夹名为考试姓名&#xff08;中文&#xff09;&#xff1b;考试完毕后&#xff0c;将所编写的文件放在上述文件中。 第一题&#xff08;20分&…

vue使用antv-x6 绘制流程图DAG图(二)

代码&#xff1a; <template><div class"graph-wrap" click.stop"hideFn"><Toobar :graph"graph"></Toobar><!-- 小地图 --><div id"minimap" class"mini-map-container"></div>…

URL重写

URL重写 URL重写是一种通过修改URL来管理用户会话的会话管理技术。由于URL容易在传输过程中被截取,因此该技术一般在要传输的信息不是很重要时才使用。例如,在线购物门户中,servlet可以修改URL以便包含用户名等用户信息。然后servlet显示该URL。用户单击URL超链接时,信息发…

ES6.8.6 Java客户端发起 增删改查 query (bool)、update、delete

文章目录 环境测试数据增单个新增批量新增 删通过delete by api删除通过delete by query api删除删除索引中指定字段&#xff08;script&#xff09; 改单个修改update by api通过_bulk批量修改批量修改update by query api使用script脚本修改 查完全匹配&#xff08;term&…

【Qt基本功修炼】Qt线程的两种运行模式

1. 前言 QThread是Qt中的线程类&#xff0c;用于实现多线程运行。 QThread有两种工作模式&#xff0c;即 消息循环模式无消息循环模式 两种模式分别适用于不同的场景。下面我们将从多个方面&#xff0c;讲解QThread两种工作模式的区别。 2. 消息循环模式 2.1 实现原理 Q…

nightinage部署

git开源地址 GitHub - ccfos/nightingale: An all-in-one observability solution which aims to combine the advantages of Prometheus and Grafana. It manages alert rules and visualizes metrics, logs, traces in a beautiful web UI. 一、下载源码自己编译运行 二、用…