《Pandas 简易速速上手小册》第8章:Pandas 高级数据分析技巧(2024 最新版)

在这里插入图片描述

文章目录

  • 8.1 使用 apply 和 map 函数
    • 8.1.1 基础知识
    • 8.1.2 重点案例:客户数据清洗和转换
    • 8.1.3 拓展案例一:产品评分调整
    • 8.1.4 拓展案例二:地址格式化
  • 8.2 性能优化技巧
    • 8.2.1 基础知识
    • 8.2.2 重点案例:大型销售数据分析
    • 8.2.3 拓展案例一:内存优化通过更高效的数据类型
    • 8.2.4 拓展案例二:使用并行处理加速数据清洗
  • 8.3 处理大型数据集
    • 8.3.1 基础知识
    • 8.3.2 重点案例:分块读取并处理销售数据
    • 8.3.3 拓展案例一:使用高效数据格式存储和读取
    • 8.3.4 拓展案例二:利用 Dask 处理超大数据集

8.1 使用 apply 和 map 函数

在 Pandas 中,applymap 函数是进行数据转换和运算的强大工具,它们提供了一种高效的方法来处理数据集中的元素。

8.1.1 基础知识

  1. apply 函数: 可以在 DataFrame 的轴(行或列)上应用一个函数,适用于需要访问多个列,或整个行/列的操作。
  2. map 函数: 主要用于 Series,将一个函数映射到 Series 的每个元素上,适用于元素级的转换和运算。
  3. applymap 函数: 在 DataFrame 的每个元素上应用一个函数,适用于元素级的操作,是 map 函数在 DataFrame 上的对应操作。

8.1.2 重点案例:客户数据清洗和转换

假设你有一份包含客户信息的数据集,需要进行数据清洗和转换。

数据准备

import pandas as pd

# 示例客户数据
customer_data = {
    'name': ['Alice Smith', 'bob Johnson', 'CHARLIE BROWN'],
    'age': ['25', 'thirty-five', '40'],
    'email': ['alice@example.com', 'BOB@example.com', 'charlie@example.net']
}
customer_df = pd.DataFrame(customer_data)

数据清洗和转换

# 标准化姓名格式:首字母大写,其他字母小写
customer_df['name'] = customer_df['name'].apply(lambda x: x.title())

# 转换年龄为数值类型:将非数字的年龄转换为 NaN,然后填充平均年龄
customer_df['age'] = pd.to_numeric(customer_df['age'], errors='coerce').fillna(customer_df['age'].dropna().astype(int).mean())

# 邮箱地址转小写
customer_df['email'] = customer_df['email'].map(lambda x: x.lower())

8.1.3 拓展案例一:产品评分调整

有一份包含产品评分的数据集,需要对评分进行一定的调整。

数据准备

# 示例产品评分数据
product_scores = {
    'product_id': [1, 2, 3],
    'score': [4, 3.5, 5]
}
scores_df = pd.DataFrame(product_scores)

评分调整

# 对评分加权调整:评分低于5的乘以1.1,但不超过5
scores_df['adjusted_score'] = scores_df['score'].apply(lambda x: min(x * 1.1, 5))

8.1.4 拓展案例二:地址格式化

假设有一份包含客户地址的数据集,需要将地址格式统一化,去除多余的空格和标点。

数据准备

# 示例客户地址数据
address_data = {
    'customer_id': [1, 2, 3],
    'address': ['123 Elm St.', ' 456 Maple Ave', '789 Oak Dr, ']
}
address_df = pd.DataFrame(address_data)

地址格式化

# 去除地址中的标点和多余空格
import re
address_df['address'] = address_df['address'].apply(lambda x: re.sub(r'[^\w\s]', '', x.strip()))

通过这些案例,我们展示了如何使用 applymap 函数进行数据清洗和转换。这些函数为处理复杂的数据转换提供了灵活而强大的方法,使得数据预处理变得更加高效和简洁。

在这里插入图片描述


8.2 性能优化技巧

在处理大型数据集时,性能成为一个不可忽视的因素。优化数据处理性能不仅可以节省时间,还能提高数据分析的效率。

8.2.1 基础知识

  1. 向量化操作: 利用 Pandas 和 NumPy 的向量化操作代替循环,可以显著提高执行速度。
  2. 使用更高效的数据类型: 比如将浮点数列转换为整数类型(如果可能),使用分类类型等,可以减少内存使用。
  3. 批处理处理大数据: 分批次处理数据而不是一次性加载整个数据集到内存中。
  4. 并行处理: 在可能的情况下,利用多核 CPU 进行并行处理。

8.2.2 重点案例:大型销售数据分析

假设你有一份非常大的销售数据集,需要计算每个产品的总销售额。

数据准备

import pandas as pd
import numpy as np

# 生成大型销售数据示例
np.random.seed(0)
sales_data = {
    'product_id': np.random.randint(1, 100, 1000000),
    'sales_amount': np.random.rand(1000000) * 100
}
sales_df = pd.DataFrame(sales_data)

性能优化

# 向量化计算总销售额
total_sales = sales_df.groupby('product_id')['sales_amount'].sum()

8.2.3 拓展案例一:内存优化通过更高效的数据类型

处理包含数百万条记录的客户数据集,需要将数据类型转换为更高效的格式以减少内存使用。

数据准备

# 生成大型客户数据示例
customer_data = {
    'customer_id': np.arange(1, 1000001),
    'age': np.random.randint(18, 80, 1000000),
    'email_count': np.random.randint(1, 10, 1000000)
}
customer_df = pd.DataFrame(customer_data)

内存优化

# 转换数据类型
customer_df['customer_id'] = customer_df['customer_id'].astype('int32')
customer_df['age'] = customer_df['age'].astype('int8')
customer_df['email_count'] = customer_df['email_count'].astype('int8')

8.2.4 拓展案例二:使用并行处理加速数据清洗

假设需要对一份大型文本数据集进行清洗,包括去除特殊字符、转换大小写等。

数据准备

# 生成大型文本数据示例
text_data = ['This is a SAMPLE text.' * 10 for _ in range(100000)]
text_df = pd.DataFrame(text_data, columns=['text'])

并行处理

由于 Pandas 直接不支持并行处理,此示例暂略。在实际应用中,可以考虑使用 dask 库或 multiprocessing 库来实现数据的并行处理。

通过这些案例,我们展示了如何通过向量化操作、优化数据类型、批处理处理大数据以及并行处理等技巧来提高数据处理的性能。这些方法对于处理大型数据集尤其重要,可以帮助你在保证分析质量的同时,显著减少处理时间和内存消耗。

在这里插入图片描述


8.3 处理大型数据集

处理大型数据集时,传统的数据处理方法可能会受到内存限制的影响,导致效率低下或无法执行。优化数据处理流程,使其能够高效地处理大型数据集,是提高分析效率的关键。

8.3.1 基础知识

  1. 分块处理: 将大型数据集分成小块,逐块加载处理,而不是一次性加载整个数据集到内存中。
  2. 高效的数据格式: 使用如 Parquet、HDF5 等高效的数据存储格式,可以加速数据读写操作,并降低内存使用。
  3. 使用 Dask 等工具: 对于特别大的数据集,可以使用如 Dask 这样的库,它支持并行计算并优化内存使用。

8.3.2 重点案例:分块读取并处理销售数据

假设你有一个非常大的销售记录文件,无法一次性加载到内存中,需要分块进行处理。

数据准备

此处我们模拟创建一个大型文件的过程,实际操作中你可能直接操作现有的大文件。

import pandas as pd
import numpy as np

# 生成示例销售数据并保存到 CSV 文件
chunk_size = 10000
num_chunks = 500
for i in range(num_chunks):
    df = pd.DataFrame({
        'SaleID': range(i * chunk_size, (i + 1) * chunk_size),
        'ProductID': np.random.randint(1, 100, chunk_size),
        'SaleAmount': np.random.rand(chunk_size) * 100
    })
    df.to_csv('/mnt/data/sales_large.csv', mode='a', index=False, header=(i == 0))

分块读取和处理

chunk_iter = pd.read_csv('/mnt/data/sales_large.csv', chunksize=chunk_size)

total_sales = 0
for chunk in chunk_iter:
    total_sales += chunk['SaleAmount'].sum()
print(f"Total sales amount: {total_sales}")

8.3.3 拓展案例一:使用高效数据格式存储和读取

将大型数据集转换为更高效的格式,如 Parquet,以优化读写速度和降低内存消耗。

# 假设 df 是一个大型 DataFrame
df.to_parquet('/mnt/data/sales_large.parquet')

# 读取 Parquet 文件
df_parquet = pd.read_parquet('/mnt/data/sales_large.parquet')

8.3.4 拓展案例二:利用 Dask 处理超大数据集

对于超大型数据集,Pandas 可能不足以高效处理。此时可以考虑使用 Dask。

# 注意:此代码示例需要在支持 Dask 的环境中运行
from dask import dataframe as dd

# 读取数据
dask_df = dd.read_csv('/mnt/data/sales_large.csv')

# 使用 Dask 进行计算
total_sales_dask = dask_df['SaleAmount'].sum().compute()
print(f"Total sales amount with Dask: {total_sales_dask}")

通过这些案例,我们展示了如何处理大型数据集,包括分块处理数据、使用高效的数据格式,以及利用 Dask 进行超大数据集的分析。这些技巧对于处理和分析大规模数据集至关重要,可以帮助你克服内存限制,提高数据处理效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/364894.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python之数据分析

【案例】 某公司有2份数据文件,现在需要对其进行数据分析,计算每日的销售额并以柱状图表的形式进行展现。 数据如下: 一月份数据: 二月份数据: 需求分析 根据题目要求我们要得到每日销售额,分析文本数据可以…

一些你可能用到的头文件和函数

1. gets 函数和 fgets 函数。 两者功能相似,都是输入 char 型 字符,但是格式和稳定性有所差别。前者gets稳定性较弱,但是用法简单,格式如下: 现在一些工程都用 fgets 函数,因为它的强大的稳定性&#xff0…

玩转全新nova12系列熄屏显示,做最潮nova星人!

熄屏显示一直是大家非常喜欢的一项功能,可以让我们在不影响他人的情况下随时随时地查看消息提醒。华为nova12全系列机型均支持熄屏显示功能,且在系列上更是有重磅升级,熄屏显示不再只局限于一小块区域,整个屏幕都可以作为显示空间…

【2024美赛C题】网球大佬带你无背景压力分析解题思路!

2024美赛数学建模c题思路分享 加群可以享受定制等更多服务,或者搜索B站:数模洛凌寺 联络组织企鹅:936670395 以下是C题老师的解题思路(企鹅内还会随时更新文档): 1背景介绍 2024MCM问题C:网…

基于Python3的OneDrive多网盘挂载程序,带会员/同步等功能,附带系统搭建教程

搭建教程 虚拟主机用户&#xff0c; Apache构架的配置如下&#xff0c;Nginx的我不知道 根目录创建一个.htaccess文件&#xff0c;内容如下&#xff1a; <IfModule mod_rewrite.c> RewriteEngine on RewriteCond %{REQUEST_URI} !^public RewriteRule ^(…

Git介绍与常用命令总结

Git介绍与其常用命令总结 1、Git介绍2、Git的使用3、Git常用命令3.1 初始化仓库3.2 克隆仓库3.3 配置用户信息3.4 提交代码(Commit)3.5 推送代码(Push)3.6 拉取代码(Pull)3.7 分支(Branch)3.8 远程仓库(Remote)3.9 撤销回退本地改动3.10 更新本地仓库与远程仓库 1、Git介绍 Gi…

2024年美国大学生数学建模竞赛F题思路分析

题目 非法野生动物贸易对环境造成了负面影响&#xff0c;并威胁全球生物多样性。据估计&#xff0c;其涉及高达265亿美元的年交易额&#xff0c;被认为是全球所有非法交易中的第四大。[1] 你需要开发一个基于数据驱动的5年项目&#xff0c;旨在显著减少非法野生动物贸易。你的…

npm 和 yarn 的使用

安装 yarn npm i yarn -g查看版本 npm -v yarn --version切换 npm/yarn 的下包镜像源 // 查看当前的镜像源 npm config get registry// 切换淘宝镜像源 // 新的淘宝源&#xff0c;旧的淘宝源已于2022年05月31日零时起停止服务 npm config set registry https://registry.…

鸿蒙ArkUI日期选择组件

鸿蒙ArkUI日期选择组件&#xff0c;基于基础组件进行的二次封装的日期选择组件&#xff0c;快速实现日期选择。 /*** 日期*/ Component export default struct DiygwDate{//绑定的值Link Watch(onValue) value:string;// 隐藏值State valueField: string value;// 显示值Sta…

【靶场实战】Pikachu靶场不安全的文件下载漏洞关卡详解

Nx01 系统介绍 Pikachu是一个带有漏洞的Web应用系统&#xff0c;在这里包含了常见的web安全漏洞。 如果你是一个Web渗透测试学习人员且正发愁没有合适的靶场进行练习&#xff0c;那么Pikachu可能正合你意。 Nx02 不安全的文件下载漏洞概述 文件下载功能在很多web系统上都…

移动机器人激光SLAM导航(二):运动控制与传感器篇

参考引用 机器人工匠阿杰wpr_simulation 1. 机器人运动控制 1.1 测试环境安装 wpr_simulation 安装$ mkdir -p catkin_ws/src $ cd catkin_ws/src $ git clone https://github.com/6-robot/wpr_simulation.git $ cd wpr_simulation/scripts/ $ ./install_for_melodic.sh # 自…

Elasticsearch-内存结构

ElasticSearch的内存从大的结构可以分堆内存&#xff08;On Heap&#xff09;和堆外内存&#xff08;Off Heap&#xff09;。Off Heap部分由Lucene进行管理。On Heap部分存在可GC部分和不可GC部分&#xff0c;可GC部分通过GC回收垃圾对象&#xff0c;从而释放内存。不可GC部分不…

【项目日记(七)】第三层: 页缓存的具体实现(上)

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:项目日记-高并发内存池⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你做项目   &#x1f51d;&#x1f51d; 开发环境: Visual Studio 2022 项目日…

three.js CSS3DRenderer、CSS3DObject渲染HTML标签

有空的老铁关注一下我的抖音&#xff1a; 效果&#xff1a; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs" style"border: 1px solid red;position: relative;"><…

react 之 useInperativeHandle

useInperativeHandle是通过ref暴露子组件中的方法 1.场景说明-直接调用子组件内部的方法 import { forwardRef, useImperativeHandle, useRef } from "react"// 子组件const Son forwardRef((props, ref) > {// 实现聚焦逻辑const inputRef useRef(null)const …

【知识点】Java常用

文章目录 基础基础数据类型内部类Java IOIO多路复用重要概念 Channel **通道**重要概念 Buffer **数据缓存区**重要概念 Selector **选择器** 关键字final 元注解常用接口异常处理ErrorException JVM与虚拟机JVM内存模型本地方法栈虚拟机栈 Stack堆 Heap方法区 Method Area (JD…

npm安装报错,出现.staging

问题场景&#xff1a;同事发了一个本地的安装包&#xff0c;拿到了没仔细看&#xff0c;直接npm install&#xff0c;没有发现根目录下的package-lock.json。然后就发现安装一直不成功&#xff0c;还会卡主。并且在node_modules文件夹下还会出现.staging文件夹&#xff0c;正常…

计算机网络实验六

目录 实验6 静态路由与RIP协议配置 1、实验目的 2、实验设备 &#xff08;1&#xff09;内容一&#xff1a;&#xff08;静态路由配置&#xff09; &#xff08;2&#xff09;内容二&#xff1a;&#xff08;RIP协议配置&#xff09; 3、网络拓扑及IP地址分配 &#xff…

3593 蓝桥杯 查找最大元素 简单

3593 蓝桥杯 查找最大元素 简单 // C风格解法1&#xff0c;通过率100%&#xff0c;多组数据处理样式//str "abcdefgfedcba" //abcdefg(max)fedcba//str "xxxxx" //x(max)x(max)x(max)x(max)x(max)#include<bits/stdc.h>const int N 1e2 10;char …

无法在 word 中登录 Grammarly

目录 1. 情况描述 2. 解决方法 3. 原因分析 1. 情况描述 在浏览器中可以登录 Grammarly&#xff0c;但是在 word 中登录失败&#xff0c;大致如下图所示&#xff1a; 我自己没有截图&#xff0c;这是网上别人的图&#xff0c;但差不多都长这个样子。 2. 解决方法 我点击了…