政安晨的机器学习笔记——演绎一个TensorFlow官方的Keras示例(对服装图像进行分类,很全面)

导语

Keras是一个高级API接口,用于构建和训练神经网络模型。它是TensorFlow的一部分,提供了一种简洁、直观的方式来创建深度学习模型。

Keras的主要特点如下:

  1. 简洁易用:Keras提供了一组简单的函数和类,使模型的创建和训练变得容易上手。它的API设计注重用户友好性和可读性。

  2. 模块化:Keras提供了一系列模块化的组件,可以灵活地构建各种类型的神经网络模型。它支持常见的网络层(如全连接层、卷积层、循环层等),并且可以轻松地自定义模型结构。

  3. 多后端支持:Keras可以在多个深度学习框架之间切换使用,包括TensorFlow、Theano和CNTK。这使得Keras非常灵活,并且适用于不同的使用场景。

  4. 内置算法和损失函数:Keras提供了许多内置的算法和损失函数,如SGD、Adam、Cross Entropy等。这些算法和损失函数已经经过优化和测试,可以直接应用于模型训练过程。

  5. 可扩展性:Keras支持方便地使用自定义的层、损失函数和评估指标。这使得用户可以根据自己的需求对Keras进行扩展,以满足更复杂的任务和模型结构。

  6. 并行计算:Keras支持在多个GPU上进行并行计算,可以加速模型的训练和推断过程。

Keras的使用步骤如下:

  1. 安装Keras:可以通过pip安装Keras,也可以直接在TensorFlow中使用Keras。

  2. 导入库:在使用Keras之前,需要导入相应的库,如tensorflow.keras或者keras。

  3. 构建模型:通过调用Keras的函数和类,可以构建不同类型的神经网络模型。可以选择性地添加网络层、激活函数、正则化等。

  4. 编译模型:在训练模型之前,需要对模型进行编译。这包括选择合适的优化器、损失函数和评估指标。

  5. 训练模型:通过调用模型的fit函数,可以用训练数据来训练模型。可以设置训练的批次大小、训练的轮数和验证集等。

  6. 评估模型:训练完成后,可以使用测试数据对模型进行评估。通过调用模型的evaluate函数,可以得到模型在测试数据上的损失值和指标值。

  7. 使用模型:训练好的模型可以用于预测未知数据。通过调用模型的predict函数,可以得到模型对新数据的预测结果。

总的来说,Keras是一个强大而灵活的深度学习框架,提供了简单易用的API接口,可以帮助用户快速构建和训练神经网络模型。它在TensorFlow中的集成使得深度学习变得更加便捷和高效。

演绎开始

本笔记将跟随TensorFlow官方指南训练一个神经网络模型,对运动鞋和衬衫等服装图像进行分类。即使您不理解所有细节也没关系;这只是对完整 TensorFlow 程序的快速概述,详细内容会在您实际操作的同时进行介绍。

本指南使用了 tf.keras,它是 TensorFlow 中用来构建和训练模型的高级 API。

# TensorFlow and tf.keras
import tensorflow as tf

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt

print(tf.__version__)

因为,示例中涉及到了 matplotlib ,咱们在tensorflow的虚拟环境中安装一下:

pip install matplotlib

安装成功后,执行上述代码如下:

导入 Fashion MNIST 数据集

本笔记使用Fashion MNIST数据集:

 Fashion MNISTicon-default.png?t=N7T8https://github.com/zalandoresearch/fashion-mnist 

该数据集包含 10 个类别的 70,000 个灰度图像。

图片如下··· > 这些图像以低分辨率(28x28 像素)展示了单件衣物:

Fashion MNIST 旨在临时替代经典MNIST数据集,后者常被用作计算机视觉机器学习程序的“Hello, World”。MNIST 数据集包含手写数字(0、1、2 等)的图像,其格式与您将使用的衣物图像的格式相同。

本指南使用 Fashion MNIST 来实现多样化,因为它比常规 MNIST 更具挑战性。这两个数据集都相对较小,都用于验证某个算法是否按预期工作。对于代码的测试和调试,它们都是很好的起点。

在本指南中,我们使用 60,000 张图像来训练网络,使用 10,000 张图像来评估网络学习对图像进行分类的准确程度。您可以直接从 TensorFlow 中访问 Fashion MNIST。直接从 TensorFlow 中导入和加载 Fashion MNIST 数据:

fashion_mnist = tf.keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

加载数据集会返回四个 NumPy 数组:

  • train_images 和 train_labels 数组是训练集,即模型用于学习的数据。
  • 测试集test_images 和 test_labels 数组会被用来对模型进行测试。

执行如下:

加载数据集会返回四个 NumPy 数组:

  • train_images 和 train_labels 数组是训练集,即模型用于学习的数据。
  • 测试集test_images 和 test_labels 数组会被用来对模型进行测试。

图像是 28x28 的 NumPy 数组,像素值介于 0 到 255 之间。标签是整数数组,介于 0 到 9 之间。

这些标签对应于图像所代表的服装

标签
0T恤/上衣
1裤子
2套头衫
3连衣裙
4外套
5凉鞋
6衬衫
7运动鞋
8
9短靴

每个图像都会被映射到一个标签。由于数据集不包括类名称,请将它们存储在下方,供稍后绘制图像时使用:

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

浏览数据

在训练模型之前,我们先浏览一下数据集的格式。以下代码显示训练集中有 60,000 个图像,每个图像由 28 x 28 的像素表示:

train_images.shape

咱们的执行如下图所示:

同样,训练集中有 60,000 个标签:

len(train_labels)

每个标签都是一个 0 到 9 之间的整数:

train_labels

测试集中有 10,000 个图像。同样,每个图像都由 28x28 个像素表示:

test_images.shape

测试集包含 10,000 个图像标签:

len(test_labels)

预处理数据

在训练网络之前,必须对数据进行预处理。如果您检查训练集中的第一个图像,您会看到像素值处于 0 到 255 之间:

plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()

将这些值缩小至 0 到 1 之间,然后将其馈送到神经网络模型。为此,请将这些值除以 255。请务必以相同的方式对训练集测试集进行预处理:

train_images = train_images / 255.0

test_images = test_images / 255.0

为了验证数据的格式是否正确,以及您是否已准备好构建和训练网络,让我们显示训练集中的前 25 个图像,并在每个图像下方显示类名称。

plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])
plt.show()

构建模型

构建神经网络需要先配置模型的层,然后再编译模型。

设置层

神经网络的基本组成部分是。层会从向其馈送的数据中提取表示形式。希望这些表示形式有助于解决手头上的问题。

大多数深度学习都包括将简单的层链接在一起。大多数层(如tf.keras.layers.Dense)都具有在训练期间才会学习的参数。

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10)
])

该网络的第一层tf.keras.layers.Flatten将图像格式从二维数组(28 x 28 像素)转换成一维数组(28 x 28 = 784 像素)。将该层视为图像中未堆叠的像素行并将其排列起来。该层没有要学习的参数,它只会重新格式化数据。

展平像素后,网络会包括两个tf.keras.layers.Dense层的序列。它们是密集连接或全连接神经层。第一个 Dense 层有 128 个节点(或神经元)。第二个(也是最后一个)层会返回一个长度为 10 的 logits 数组。每个节点都包含一个得分,用来表示当前图像属于 10 个类中的哪一类。

注:上述代码开始需要算力,如果在CPU版本的tensorflow上运行上述代码(这也取决于tensorflow的版本),可能出现内核挂掉的额情况,为了将这个实验继续下去,我选择现在切换到Colaboratory(简称Colab)上,以在线的方式继续进行(关于Colab我以后会在其它笔记中为大家详细演绎)。

编译模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数 - 测量模型在训练期间的准确程度。你希望最小化此函数,以便将模型“引导”到正确的方向上。
  • 优化器 - 决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标 - 用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

在Colab上执行如下:

训练模型

训练神经网络模型需要执行以下步骤:

  1. 将训练数据馈送给模型。在本例中,训练数据位于 train_images 和 train_labels 数组中。
  2. 模型学习将图像和标签关联起来。
  3. 要求模型对测试集(在本例中为 test_images 数组)进行预测。
  4. 验证预测是否与 test_labels 数组中的标签相匹配。

向模型馈送数据

要开始训练,请调用 model.fit 方法,这样命名是因为该方法会将模型与训练数据进行“拟合”:

model.fit(train_images, train_labels, epochs=10)

执行如下:

在模型训练期间,会显示损失和准确率指标。此模型在训练数据上的准确率达到了 0.91(或 91%)左右。

评估准确率

接下来,比较模型在测试数据集上的表现:

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

print('\nTest accuracy:', test_acc)

执行如下:

结果表明,模型在测试数据集上的准确率略低于训练数据集。训练准确率和测试准确率之间的差距代表过拟合。过拟合是指机器学习模型在新的、以前未曾见过的输入上的表现不如在训练数据上的表现。过拟合的模型会“记住”训练数据集中的噪声和细节,从而对模型在新数据上的表现产生负面影响。

进行预测

模型经过训练后,您可以使用它对一些图像进行预测。附加一个 Softmax 层,将模型的线性输出 logits 转换成更容易理解的概率。

probability_model = tf.keras.Sequential([model, 
                                         tf.keras.layers.Softmax()])
predictions = probability_model.predict(test_images)

执行如下:

在上例中,模型预测了测试集中每个图像的标签。我们来看看第一个预测结果:

predictions[0]

预测结果是一个包含 10 个数字的数组。它们代表模型对 10 种不同服装中每种服装的“置信度”。您可以看到哪个标签的置信度值最大:

np.argmax(predictions[0])

因此,该模型非常确信这个图像是短靴,或 class_names[9]。通过检查测试标签发现这个分类是正确的:

test_labels[0]

您可以将其绘制成图表,看看模型对于全部 10 个类的预测。

def plot_image(i, predictions_array, true_label, img):
  true_label, img = true_label[i], img[i]
  plt.grid(False)
  plt.xticks([])
  plt.yticks([])

  plt.imshow(img, cmap=plt.cm.binary)

  predicted_label = np.argmax(predictions_array)
  if predicted_label == true_label:
    color = 'blue'
  else:
    color = 'red'

  plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
                                100*np.max(predictions_array),
                                class_names[true_label]),
                                color=color)

def plot_value_array(i, predictions_array, true_label):
  true_label = true_label[i]
  plt.grid(False)
  plt.xticks(range(10))
  plt.yticks([])
  thisplot = plt.bar(range(10), predictions_array, color="#777777")
  plt.ylim([0, 1])
  predicted_label = np.argmax(predictions_array)

  thisplot[predicted_label].set_color('red')
  thisplot[true_label].set_color('blue')

验证预测结果

在模型经过训练后,您可以使用它对一些图像进行预测。

我们来看看第 0 个图像、预测结果和预测数组。正确的预测标签为蓝色,错误的预测标签为红色。数字表示预测标签的百分比(总计为 100)。

i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i],  test_labels)
plt.show()

i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i],  test_labels)
plt.show()

让我们用模型的预测绘制几张图像。请注意,即使置信度很高,模型也可能出错。

# Plot the first X test images, their predicted labels, and the true labels.
# Color correct predictions in blue and incorrect predictions in red.
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
  plt.subplot(num_rows, 2*num_cols, 2*i+1)
  plot_image(i, predictions[i], test_labels, test_images)
  plt.subplot(num_rows, 2*num_cols, 2*i+2)
  plot_value_array(i, predictions[i], test_labels)
plt.tight_layout()
plt.show()

使用训练好的模型

最后,使用训练好的模型对单个图像进行预测。

# Grab an image from the test dataset.
img = test_images[1]

print(img.shape)

tf.keras模型经过了优化,可同时对一个或一组样本进行预测。因此,即便您只使用一个图像,您也需要将其添加到列表中:

# Add the image to a batch where it's the only member.
img = (np.expand_dims(img,0))

print(img.shape)

现在预测这个图像的正确标签:

predictions_single = probability_model.predict(img)

print(predictions_single)

plot_value_array(1, predictions_single[0], test_labels)
_ = plt.xticks(range(10), class_names, rotation=45)
plt.show()

keras.Model.predict会返回一组列表,每个列表对应一批数据中的每个图像。在批次中获取对我们(唯一)图像的预测:

np.argmax(predictions_single[0])

该模型会按照预期预测标签。

写在最后

至此,咱们顺利完成了TensorFlow官方给出的示例,这个示例对算力和TensorFlow版本还是有一定要求的,小伙伴们不妨跟着我的笔记尝试一下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/364501.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

10、数据结构与算法——堆

一、什么是堆 堆是一种特殊的树形数据结构,通常实现为完全二叉树或满二叉树。堆又分为两种类型最大堆(Max Heap) 和 最小堆(Min Heap) 1.1、什么是二叉树 二叉树是一种数据结构,它是由n(n≥0&a…

【数据分享】1929-2023年全球站点的逐日最低气温数据(Shp\Excel\免费获取)

气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、湿度等指标,其中又以气温指标最为常用!说到气温数据,最详细的气温数据是具体到气象监测站点的气温数据! 之前我们分享过1929-2023年全球气象站…

面试中问到的算法题。————目录树生成

前言 我在面试中遇到了算法题,也是我第一次面试,也不知道是太紧张了还是太久没刷算法题了,感觉压有点懵的状态,所以当时面试的时候没有做出来或者说只做了一半没有做完。 面试完成后,我又重新审视了一下题目&#xff…

【MBtiles数据格式说明】GeoServer改造Springboot番外系列一

一、MBTiles数据格式 MBTiles格式是指由MapBox制定的一种将瓦片地图数据存储到SQLite数据库中并可快速使用、管理和分享的规范,是一种用于即时使用和高效传输的规范。MBTiles既可以用作栅格输入数据存储,也可以用作WMSGetMap输出格式。规范有1.0&#xf…

linux使用iptables禁用ip

iptables是什么? iptables 是一个强大的开源软件,它是 Linux 系统内核中 netfilter 包过滤框架的一部分,用来实现防火墙功能。iptables 提供了一种灵活的方式来控制和管理进出以及通过 Linux 计算机的网络流量。 前提 我在云服务器上用doc…

物联网可视化平台:赋能企业数字化转型

在数字化转型的大潮中,企业面临着如何更好地理解和利用海量数据的挑战。物联网技术的快速发展,为企业提供了一个全新的视角和解决方案。通过物联网可视化平台,企业能够实时监控、分析和展示物联网数据,从而加速数字化转型的进程。…

前端构建变更:从 webpack 换 vite

现状 这里以一个 op (内部运营管理用)项目为例,从 webpack 构建改为 vite 构建,提高本地开发效率,顺便也加深对 webpack 、 vite 的了解。 vite 是前端构建工具,使用 一系列预配置进行rollup 打包&#x…

【目标检测】对DETR的简单理解

【目标检测】对DETR的简单理解 文章目录 【目标检测】对DETR的简单理解1. Abs2. Intro3. Method3.1 模型结构3.2 Loss 4. Exp5. Discussion5.1 二分匹配5.2 注意力机制5.3 方法存在的问题 6. Conclusion参考 1. Abs 两句话概括: 第一个真正意义上的端到端检测器最…

phpMyAdmin 未授权Getshell

前言 做渗透测试的时候偶然发现,phpmyadmin少见的打法,以下就用靶场进行演示了。 0x01漏洞发现 环境搭建使用metasploitable2,可在网上搜索下载,搭建很简单这里不多说了。 发现phpmyadmin,如果这个时候无法登陆,且也…

ubuntn挂载硬盘为只读问题

做为服务器操作系统,linux是很多站长经常用到的,那么在linux系统下如果需要新增加硬盘,该怎么增加呢?下面就来详细了解一下linux系统下添加新硬盘、分区及挂载硬盘的全过程。没有服务器的朋友可以点击了解一下阿里云1折优惠云服务…

【JS】Express.js环境配置与示例

😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍Express.js环境配置与示例。 学其所用,用其所学。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关注一下,下次更新不…

力扣hot100 二叉树的右视图 DFS BFS 层序遍历 递归

Problem: 199. 二叉树的右视图 文章目录 思路&#x1f496; BFS&#x1f496; DFS 思路 &#x1f469;‍&#x1f3eb; 甜姨 &#x1f496; BFS ⏰ 时间复杂度: O ( n ) O(n) O(n) &#x1f30e; 空间复杂度: O ( n ) O(n) O(n) class Solution {public List<Integer&…

虹科技术|一文详解IO-Link Wireless技术如何影响工业无线自动化

导读&#xff1a;在工业无线自动化的飞速发展进程中&#xff0c;IO-Link Wireless技术成为了一项具有颠覆性的创新。它将IO-Link协议与无线连接完美结合&#xff0c;解决了传统通信技术在工业应用中的痛点。本文将深入解析IO-Link Wireless技术的原理、应用领域、优势以及实际案…

Docker基础(持续更新中)

# 第1步&#xff0c;去DockerHub查看nginx镜像仓库及相关信息# 第2步&#xff0c;拉取Nginx镜像 docker pull nginx# 第3步&#xff0c;查看镜像 docker images # 结果如下&#xff1a; REPOSITORY TAG IMAGE ID CREATED SIZE nginx latest 60…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之TextPicker组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之TextPicker组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、TextPicker组件 TextClock组件通过文本将当前系统时间显示在设备上。支持不…

【DDD】学习笔记-限界上下文与架构

作为领域驱动战略设计的重要元素&#xff0c;限界上下文对领域驱动架构有着直接的影响。在领域驱动的架构设计过程中&#xff0c;识别限界上下文与上下文映射都是一个重要的过程。限界上下文可以作为逻辑架构与物理架构的参考模型&#xff0c;而上下文映射则非常直观地体现了系…

故障诊断 | 一文解决,CNN-SVM卷积神经网络-支持向量机组合模型的故障诊断(Matlab)

效果一览 文章概述 故障诊断 | 一文解决,CNN-SVM卷积神经网络-支持向量机组合模型的故障诊断(Matlab) 模型描述 卷积神经网络(Convolutional Neural Network,CNN)和支持向量机(Support Vector Machine,SVM)是两种常用的机器学习算法,它们在不同领域和任务中都表现出…

linux中vim的操作

(码字不易&#xff0c;关注一下吧w~~w) 命令模式&#xff1a; 当我们按下esc键时&#xff0c;我们会进入命令模式&#xff1b;当使用vi打开一个文件时也是进入命令模式。 光标移动&#xff1a; 1 保存退出&#xff1a;ZZ 2 代码格式化&#xff1a;ggG 3 光标移动&#xff…

公共用例库计划--个人版(六)典型Bug页面设计与开发

1、任务概述 本次计划的核心任务是开发一个&#xff0c;个人版的公共用例库&#xff0c;旨在将各系统和各类测试场景下的通用、基础以及关键功能的测试用例进行系统性地归纳整理&#xff0c;并以提高用例的复用率为目标&#xff0c;力求最大限度地减少重复劳动&#xff0c;提升…

【计算机网络】Socket的SO_REUSEADDR选项与TIME_WAIT

SO_REUSEADDR用于设置套接字的地址重用。当一个套接字关闭后&#xff0c;它的端口可能会在一段时间内处于TIME_WAIT状态&#xff0c;此时无法立即再次绑定相同的地址和端口。使用SO_REUSEADDR选项可以允许新的套接字立即绑定到相同的地址和端口&#xff0c;即使之前的套接字仍处…