基于YOLOv8的工业油污缺陷检测,多种优化方法---自研注意力CPMS基于CBAM优化, mAP@0.5提升近五个点(二)

💡💡💡本文主要内容:详细介绍了工业油污缺陷检测整个过程,从数据集到训练模型到结果可视化分析,以及如何优化提升检测性能。

💡💡💡加入CPMS mAP@0.5由原始的0.648提升至0.699

 1.工业油污数据集介绍

三星油污缺陷类别:头发丝和小黑点,["TFS","XZW"] 

数据集大小:660张

数据集地址:https://download.csdn.net/download/m0_63774211/87741209

2.基于YOLOv8的工业油污检测

2.1 修改sanxing.yaml

path: ./data/sanxing  # dataset root dir
train: trainval.txt  # train images (relative to 'path') 118287 images
val: test.txt  # val images (relative to 'path') 5000 images

# number of classes
nc: 2

# class names
names:
  0: TFS
  1: XZW

2.2 开启训练 

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8.yaml')
    model.train(data='data/sanxing/sanxing.yaml',
                cache=False,
                imgsz=640,
                epochs=200,
                batch=16,
                close_mosaic=10,
                workers=0,
                device='0',
                optimizer='SGD', # using SGD
                project='runs/train',
                name='exp',
                )

3.结果可视化分析 

YOLOv8 summary (fused): 168 layers, 3006038 parameters, 0 gradients, 8.1 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:03<00:00,  1.30s/it]
                   all         66        187      0.741      0.554      0.648      0.302
                   TFS         66        130      0.604      0.423      0.531      0.242
                   XZW         66         57      0.877      0.684      0.766      0.361

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 

PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。 

R_curve.png :召回率与置信度之间关系

results.png

 mAP_0.5:0.95表示从0.5到0.95以0.05的步长上的平均mAP.

 预测结果:

4.如何优化模型 

4.1 加入自研CPMS

YOLOv8独家原创改进:原创自研 | 创新自研CPMS注意力,多尺度通道注意力具+多尺度深度可分离卷积空间注意力,全面升级CBAM-CSDN博客

多尺度通道注意力具+多尺度深度可分离卷积空间注意力

4.2对应yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
  - [-1, 1, CPMS, [1024]]  # 10

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 13

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.3 实验结果分析

mAP@0.5由原始的0.648提升至0.699

YOLOv8_CPMS summary (fused): 187 layers, 3193942 parameters, 0 gradients, 8.3 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 3/3 [00:03<00:00,  1.32s/it]
                   all         66        187       0.65      0.686      0.699      0.326
                   TFS         66        130      0.514        0.6      0.576      0.264
                   XZW         66         57      0.786      0.771      0.821      0.387

5.系列篇

系列篇1:DCNV4_SPPF提升近四个点

系列篇2:自研注意力CPM:提升近五个点

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/362125.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JMeter 下载、安装、启动

JMeter安装部署依赖Java环境&#xff0c;所以首先得安装JDK。 JDK下载JDK环境变量配置 ① 新建系统环境变量JAVA_HOME ② 编辑系统变量Path ③ 新建系统变量CLASSPATH变量 JMeter下载安装 Apache JMeter - Apache JMeter™ JMeter安装部署依赖Java环境&#xff0c;所以首…

如何在 Golang 中使用 crypto/ed25519 进行数字签名和验证

如何在 Golang 中使用 crypto/ed25519 进行数字签名和验证 引言crypto/ed25519 算法简介环境搭建和准备工作生成密钥对进行数字签名 验证签名实际应用场景案例总结 引言 在当今数字化时代&#xff0c;网络安全显得尤为重要。无论是在网上进行交易、签署合同&#xff0c;还是发…

结构体的学习

结构体与共用体&#xff0c;枚举 1.数据类型复习&#xff1a; 2结构体. eg&#xff1b;统计全校同学信息 需要记录的点--- 姓名&#xff0c;班级&#xff0c;性别&#xff0c;成绩&#xff0c;年龄 统计名字&#xff1a;char s[ ] [ 100 ] { "Tmo" } …

01神经网络的理论及实现

感知机的缺点就是需要设置合适的权重&#xff0c;而权重的设置都是人工操作的。 1、从感知机到神经网络 重新画出感知机的模型&#xff0c;在图上加上偏置&#xff0c;由于偏置始终为1&#xff0c;所以颜色加深。 图1-1 感知机模型 引入新函数(激活函数&#xff09;&#xff…

HTML+CSS:导航栏组件

效果演示 实现了一个导航栏的动画效果&#xff0c;当用户点击导航栏中的某个选项时&#xff0c;对应的选项卡会向左平移&#xff0c;同时一个小圆圈会出现在选项卡的中心&#xff0c;表示当前选项卡的位置。这个效果可以让用户更加清晰地了解当前页面的位置和内容。 Code <…

FFMPEG 之 DXVA2 硬解

一&#xff1a;FFMPEG 支持的硬解方式有很多&#xff1a; DXVA2、D3D11VA、CUDA、QSV、OPENCL、DRM、VAAPI、VDPAU、VIDEOTOOLBOX、MEDIACODEC。 有的支持 Windows 平台&#xff0c;有的支持 linux 平台&#xff0c;有的支持 apple ios 平台&#xff0c;…

【AI视野·今日NLP 自然语言处理论文速览 第七十七期】Mon, 15 Jan 2024

AI视野今日CS.NLP 自然语言处理论文速览 Mon, 15 Jan 2024 Totally 57 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Machine Translation Models are Zero-Shot Detectors of Translation Direction Authors Michelle Wastl, Ja…

手动上传文件

代码&#xff1a; import { Button, UploadProps, Upload, message } from antd; import { UploadOutlined } from ant-design/icons;const MyUpload: React.FC () > {const props: UploadProps {name: jpgFile,action: /xxxxx/xx/接口,headers: {authorization: token,}…

Python正则表达式语法

正则表达式是一种强大的文本处理工具&#xff0c;它可以用来搜索、匹配和替换特定的字符模式。在Python中&#xff0c;正则表达式常常被用于处理字符串数据&#xff0c;例如文本搜索、数据提取、格式验证等任务。本文将深入介绍Python中正则表达式的语法&#xff0c;帮助读者全…

ElasticSearch 应用实践 笔记

概述 介绍 ES 是一个开源的高扩展的分布式全文搜索引擎&#xff0c;是整个Elastic Stack技术栈的核心。它可以近乎实时的存储&#xff0c;检索数据&#xff1b;本身扩展性很好&#xff0c;可以扩展到上百台服务器&#xff0c;处理PB级别的数据。ElasticSearch的底层是开源库Lu…

CRG设计之时钟

1. 前言 CRG(Clock and Reset Generation&#xff0c;时钟复位生成模块) 模块扮演着关键角色。这个模块负责为整个系统提供稳定可靠的时钟信号&#xff0c;同时在系统上电或出现故障时生成复位信号&#xff0c;确保各个模块按预期运行。简而言之&#xff0c;CRG模块就像是SoC系…

MySQL-DQL(Data Query Language)数据查询语言

文章目录 1. DQL定义2. 基础查询3. 条件查询&#xff08;WHERE&#xff09;4. 分组查询&#xff08;GROUP BY&#xff09;5. 过滤分组&#xff08;HAVING&#xff09;6. 排序&#xff08;ORDER BY&#xff09;7. 限制查询结果的条数&#xff08;LIMIT&#xff09;8. 多表查询8.…

Unity_Visual Effect Graph

Unity_Visual Effect Graph Unity可视化特效渲染虽不及Unreal Engine,然也还是吊打一众其他引擎的,粗浅整理一波吧,需要深入研究的点实在是太多了。 按照常规包管理方式安装Visual Effect Graph插件: 安装之后,示例文件夹中自带资源,拖入场景即可: 场景只是资源的显…

Vue学习Element-ui

声明&#xff1a;本文来源于黑马程序员PDF讲义 Ajax 我们前端页面中的数据&#xff0c;如下图所示的表格中的学生信息&#xff0c;应该来自于后台&#xff0c;那么我们的后台和前端是 互不影响的2个程序&#xff0c;那么我们前端应该如何从后台获取数据呢&#xff1f;因为是2…

Tensorflow2.0笔记 - where,scatter_nd, meshgrid相关操作

本笔记记录tf.where进行元素位置查找&#xff0c;scatter_nd用于指派元素到tensor的特定位置&#xff0c;meshgrid用作绘图的相关操作。 import tensorflow as tf import numpy as np import matplotlib.pyplot as plttf.__version__#where操作查找元素位置 #输入的tensor是Tr…

问题:第十三届全国人民代表大会第四次会议召开的时间是()。 #经验分享#知识分享#媒体

问题&#xff1a;第十三届全国人民代表大会第四次会议召开的时间是&#xff08;&#xff09;。 A. 2018年3月3日至3月11日 B. 2019年3月5日至3月11日 C. 2020年3月5日至3月11日 D. 2021年3月5日至3月11日 参考答案如图所示 问题&#xff1a;顾客满意是顾客对一件产品满足…

EDR、SIEM、SOAR 和 XDR 的区别

在一个名为网络安全谷的神秘小镇&#xff0c;居住着四位守护者&#xff0c;他们分别是EDR&#xff08;艾迪&#xff09;、SIEM&#xff08;西姆&#xff09;、SOAR&#xff08;索亚&#xff09;和XDR&#xff08;艾克斯&#xff09;。他们各自拥有独特的能力&#xff0c;共同守…

中国城乡建设统计年鉴,pdf、xls格式,时间覆盖2002-2022年

基本信息&#xff1a; 数据名称: 中国城乡&#xff08;市&#xff09;建设统计年鉴 数据格式: pdf、xls不定 数据时间: 2002-2022年 数据几何类型: 文本 数据坐标系: —— 数据来源&#xff1a;住房和城乡建设部 2005年之后数据中有《中国城市建设统计年鉴》、《中…

node,node-sass,sass-loader之间的版本关系

前言 安装配置node-sass 以及 sass-loader想必是很多前端的噩梦–一不小心又不成功还得装个半天。 下面说一下这个问题。 当然&#xff0c;你肯定遇到过&#xff1a; Node Sass version 9.0.0 is incompatible with ^4.0.0-这样的问题&#xff0c;这个也是因为三者关系对不上…

SpringMVC-基本概念

一、引子 我们在上篇文章Spring集成Web中抛出了一个问题&#xff1a;为什么我们一直在自用Java Web阶段使用的Servlet来承接客户端浏览器的请求呢&#xff0c;我们熟知甚至是已经在日常开发中经常使用的Controller又与之有什么关系呢&#xff1f;我们将在本篇文章解答读者的这…