MySQL索引原理以及SQL优化

案例

struct index_failure_t{

       int id;

       string name;

       int cid;

       int score;

       string phonenumber;

}

Map<int,index_failure>;

熟悉C++的同学知道,上述案例中,我们map底层是一颗红黑树,一个节点存储了一对kv(键值对),k是int类型,v是结构体类型。我们把大量的数据记录到这颗红黑树中。

对应到sql中,语法变成了

CREATE TABLE ‘index_failure_t’(

       ‘id’ INT(11) NOT NULL AUTO_INCREAMENT,

       ‘name’ VARCHAR(255) DEFAULT NULL,

       ‘cid’ INT(11) DEFAULT NULL,

       ‘score’ SAMLLINT DEFAULT 0,

       ‘phonenumber’ VARCHAR(20),

       PRIMARY KEY(‘id’),

)

其中PRIMARY KEY(‘id’)相当于C++案例中的map指定KEY的步骤。存储结构也由红黑树变成了B+树。

如果在其中再添加 KEY ‘name_idx‘ (‘name’)语句,在C++中相当于再建立Map<string,int>。如果要搜寻某些数据,则通过Map<string,int>获取到int,再根据这个int获取Map<int,index_failure>里的数据,这种做法叫做“回表查询”。这里的索引也叫二级索引或者辅助索引。

细节上有所差异,业务上高度相似。红黑树是二叉平衡搜索树,B+树是多路平衡搜索树。

Sql中的索引简介

索引,在sql底层的B+树中,就是各个节点的key。通过索引,可以快速地锁定数据的位置。

主键索引

它是非空唯一索引,一个表只有一个主键索引;在 innodb 中,主键索引的 B+ 树包含表数据信息。如果没有执行主键索引,那么会自动把第一个非空唯一索引设为主键,如果没有非空唯一索引,那么自动生成一个主键索引rowid。

PRIMARY KEY(key1, key2)

唯一索引

不可以出现相同的值,可以有 NULL 值;

UNIQUE(key)

普通索引

允许出现相同的索引内容;

INDEX(key) OR KEY(key[,...])

组合索引

对表上的多个列进行索引

索引代价

代价:占用空间,DML语句变慢(因为底层维护的数据结构变多了)。

索引的使用场景

B+树和红黑树

B+树:多路平衡搜索树

红黑树:二叉平衡搜索树

多路:一个节点可以有多个子节点。

二叉:一个节点只能由2个子节点。

平衡:平衡根节点到各个叶子节点的高度,提供稳定是时间搜索复杂度。

搜索树:是有序的树结构。

B+树并不是一个节点存储一条数据,而是一个节点存储16kb数据,叶子节点存储数据库数据,非叶子节点存储地址数据。这样做的目的是让B+树尽量是矮胖结构,减少磁盘IO的次数,因为每走到一个节点都要把节点的数据内容加载到内存中,进行一次磁盘IO,磁盘IO的耗时是内存IO的百倍。

B树则非叶子节点也存储数据信息。

innodb 体系结构

Buffer Pool主要用于缓存聚集索引和二级索引的B+树节点,也就是热门数据。

Change Buffer则专门用于缓存对聚集索引的修改操作。这些数据并不在 buffer pool 中,Change buffer 中的数据将会异步 merge 到 buffer pool 中。

Buffer Pool修改的数据会不经过内核的高速缓冲区,直接通过O_DIRECT刷入磁盘中。

SQL查询优化涉及原则及思路

EXPLAIN查询sql优化器方案

EXPLAIN是一个关键字,用于查询优化器解析和显示查询执行计划。

MySQL会解析查询,并返回一张执行计划表,该表描述了查询执行的步骤和顺序。执行计划表的列包括:

id:每个查询块(query block)的唯一标识符。

select_type:查询类型,例如SIMPLE(简单查询)、PRIMARY(主查询)等。

table:查询涉及的表名。

partitions:查询涉及的分区。

type:连接类型,例如ALL(全表扫描,尽量不要出现)、INDEX(索引扫描)、ref(索引值不好说、可能是非唯一索引)。

possible_keys:可能使用的索引。

key:实际使用的索引。

key_len:使用的索引的长度。

ref:连接条件,例如const(无需访问它表)。

rows:估计的返回行数。

filtered:过滤后的行百分比。

Extra:其他的附加信息。

覆盖索引

其实叫做索引覆盖更加合理,就是在辅助索引B+树里能找到全部所需数据,就不再进行回表查询了,可以减少查询耗时。这时候要求我们select语句尽量能包含辅助索引B+树的数据,而不是用select *。

最左匹配原则

最左匹配原则只适用于使用组合索引的情况,对于单列索引或者没有索引的情况,顺序并不重要。当查询语句中有多个条件,并且这些条件可以利用索引进行匹配时,最左匹配原则决定了如何使用索引进行匹配。我们可以通过利用最左匹配规则的思路,减少B+树的创建数量,也就是过度索引,比如一棵树虽然有组合索引,但是我们可以通过最左匹配规则只沿用其中一条索引也能起到相同的效果。同时组合索引的存在也能帮助我们复用索引减少回表次数。

索引下推

索引存储

索引失效

select ... where A and B 若 A 和 B 中有一个不包含索引,则索引失效;

索引字段参与运算,则索引失效;例如:from_unixtime(idx)= '2021-04-30'; 改成 idx = unix_timestamp("2021-04-30");

索引字段发生隐式转换,则索引失效;例如:将列隐式转换为某个类型,实际等价于在索引列上作用了隐式转换函数;

LIKE 模糊查询,通配符 % 开头,则索引失效;例如:select* from user where name like '%Mark';

在索引字段上使用 【NOT】【 <>】【 != 】索引失效;如果判断 id <> 0则修改为idx > 0 or idx < 0;

组合索引中,没使用第一列索引,索引失效;

Sql查询优化思路

查询频次较高且数据量大的表建立索引;

索引选择使用频次较高,过滤效果好的列或者组合;

使用短索引,能使得节点包含的信息多,较少磁盘 IO 操作;比如: smallint,tinyint;

对于组合索引,考虑最左侧匹配原则和覆盖索引;

尽量选择区分度高的列作为索引,该列的值相同的越少越好;

尽量扩展索引,在现有索引的基础上,添加复合索引;最多 6 个 索引;

不要 select *; 尽量只列出需要的列字段;方便使用覆盖索 引;

索引列,列尽量设置为非空;

可选:开启自适应 hash 索引或者调整 change buffer;

Sql查询优化方法

Show processlist:是一个用于查看当前正在运行的数据库连接和查询的 MySQL 命令。它会返回一个结果集,该结果集包含了当前活动的数据库连接的详细信息。通过查看 SHOW PROCESSLIST 的结果,你可以了解当前正在运行的查询、连接的用户、连接的状态以及查询执行的时间。这对于监视数据库的性能、识别慢查询或长时间运行的查询以及查找可能存在的连接问题都非常有用。

慢查询日志:慢查询是指执行时间较长的查询语句,可能会对数据库性能产生负面影响。通过开启慢日志,数据库会将执行时间超过设定阈值的查询语句记录到慢日志文件中,以便后续分析和优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/359295.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

WPF应用程序(.Net Framework 4.8) 国际化

1、新建两个资源字典文件zh-CN.xaml和en-US.xaml&#xff0c;分别存储中文模板和英文模板 (1) zh-CN.xaml <ResourceDictionary xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml&q…

机器学习:Logistic回归(Python)

Logistic回归&#xff08;二分类&#xff09; logistic_regression_class2.py import numpy as np import matplotlib.pyplot as pltclass LogisticRegression:"""逻辑回归&#xff0c;采用梯度下降算法 正则化&#xff0c;交叉熵损失函数&#xff0c;实现二分…

机器学习 强化学习 深度学习的区别与联系

机器学习 强化学习 深度学习 机器学习 按道理来说&#xff0c; 这个领域&#xff08;机器学习&#xff09;应该叫做 统计学习 &#xff08;Statistical Learning&#xff09;&#xff0c;因为它的方法都是由概率统计领域拿来的。这些人中的领军人物很有商业头脑&#xff0c; 把…

[docker] 利用Dockerfile多级构建缩减镜像大小

一、nginx FROM centos:7 as build #基于centos7镜像 MAINTAINER nginx on centos7 by lxy-20240125 #注释信息 ADD nginx-1.24.0.tar.gz /opt/ #将nginx安装包传输到镜像中 RUN yum -y install pcre-devel zlib-devel gcc gcc-c make && \cd /opt/nginx-1.24.0 &…

什么是DDOS流量攻击,DDoS防护安全方案

随着互联网的发展普及&#xff0c;云计算成新趋势&#xff0c;人们对生活方式逐渐发生改变的同时&#xff0c;随之而来的网络安全威胁也日益严重&#xff01; 目前在网络安全方面&#xff0c;网络攻击是最主要的威胁之一&#xff0c;其中DDoS攻击是目前最为常见的网络攻击手段…

Android studio打包apk比较大

1.遇到的问题 在集成linphone打包时发现有118m&#xff0c;为什么如此之大额。用studio打开后发现都是c不同的pu架构。 2.解决办法 增加ndk配置&#xff0c;不选配置那么多的cpu结构&#xff0c;根据自己需要调整。 defaultConfig { applicationId "com.matt.linphoneca…

2023美赛A题之Lotka-Volterra【完整思路+代码】

这是2023年的成功&#xff0c;考虑到曾经付费用户的负责&#xff0c;2024年可以发出来了。去年我辅导队伍数量&#xff1a;15&#xff0c;获奖M为主&#xff0c;个别F&#xff0c;H&#xff0c;零S。言归正传&#xff0c;这里我开始分享去年的方案。由于时间久远&#xff0c;我…

FPGA——芯片手册学习(AD7606)

芯片手册学习&#xff08;AD7606&#xff09; 芯片封装图引脚功能图总结要操作的端口芯片时序 芯片封装图 引脚功能图 总结要操作的端口 6 PAR/SER/BYTE/ SEL :并行、串行、字节选择&#xff0c;我们使用并行&#xff0c;设置为0 7 STBY:睡眠控制&#xff0c;0电平睡眠 9 10 C…

8-小程序数据promise化、共享、分包、自定义tabbar

小程序API Promise化 wx.requet 官网入口 默认情况下&#xff0c;小程序官方异步API都是基于回调函数实现的 wx.request({method: , url: , data: {},header: {content-type: application/json // 默认值},success (res) {console.log(res.data)},fail () {},complete () { }…

银行数据仓库体系实践(14)--数据应用之内部报表及数据分析

在银行日常经营中&#xff0c;每个部门、分支行随时随地都需要进行数据统计和分析&#xff0c;才能对银行当前业务状况及时了解&#xff0c;以进行后续经营策略、营销活动、风险策略的调整和决策。那在平时进行数据分析时除了各数据应用系统&#xff08;如各类监管报表系统、财…

数据可视化 pycharts实现时间数据可视化

自用版 数据格式为&#xff1a; 运行效果为&#xff1a; from pyecharts import options as opts from pyecharts.charts import Polar, Page import csv filename "./hot-dog-places.csv" data_x [] data_y [] with open(filename) as f:reader csv.reade…

Android悬浮窗实现步骤详解

最近想做一个悬浮窗秒表的功能&#xff0c;所以看下悬浮窗具体的实现步骤 1、初识WindowManager 实现悬浮窗主要用到的是WindowManager SystemService(Context.WINDOW_SERVICE) public interface WindowManager extends ViewManager {... }WindowManager是接口类&#xff0c…

基于springboot招生管理系统源码和论文

在Internet高速发展的今天&#xff0c;我们生活的各个领域都涉及到计算机的应用&#xff0c;其中包括招生管理系统的网络应用&#xff0c;在外国招生管理系统已经是很普遍的方式&#xff0c;不过国内的管理网站可能还处于起步阶段。招生管理系统具有招生公告信息管理功能的选择…

三款精选数字孪生产品大比拼

作为一名数据可视化领域的资深用户&#xff0c;我接触过众多数据可视化产品。本文将介绍三款备受关注的数据可视化工具&#xff0c;并对它们进行详细的比较。 首先&#xff0c;让我们了解一下数据可视化产品的核心价值。在信息爆炸的时代&#xff0c;数据可视化成为快速理解复…

Kubernetes k8s

Kubernetes k8s 一个开源的容器编排引擎&#xff0c;用来对容器化应用进行自动化部署、 扩缩和管理。 从架构设计层面&#xff0c;k8s能很好的解决可用性&#xff0c;伸缩性&#xff1b;从部署运维层面&#xff0c;服务部署&#xff0c;服务监控&#xff0c;应用扩容和故障处…

C++——特殊类

特殊类 文章目录 特殊类一、请设计一个类&#xff0c;不能被拷贝二、请设计一个类&#xff0c;只能在堆上创建对象方案一&#xff1a;析构函数私有化方案二&#xff1a;构造函数私有化 三、请设计一个类&#xff0c;只能在栈上创建对象四、请设计一个类&#xff0c;不能被继承五…

互联网加竞赛 基于深度学习的人脸性别年龄识别 - 图像识别 opencv

文章目录 0 前言1 课题描述2 实现效果3 算法实现原理3.1 数据集3.2 深度学习识别算法3.3 特征提取主干网络3.4 总体实现流程 4 具体实现4.1 预训练数据格式4.2 部分实现代码 5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 毕业设计…

初学者在Python中的基本图像处理库 - OpenCV和imutils

处理图像处理和操作的最常用的库之一是 Python 的 OpenCV。对于图像分类、目标检测或光学字符识别&#xff0c;在人工智能领域与图像相关的任何工作大多数时候都需要某种形式的图像处理和操作。 在本教程中&#xff0c;我们将专注于 OpenCV 的一些基本功能。这些功能基础且有时…

tcpdump在手机上的使用

首先手机得root才可以&#xff0c;主要分析手机与手机的通信协议 我使用的是一加9pro&#xff0c; root方法参考一加全能盒子、一加全能工具箱官方网站——大侠阿木 (daxiaamu.com)https://optool.daxiaamu.com/index.php tcpdump&#xff0c;要安装在/data/local/tmp下要arm6…

ES(ElasticSearch)技术栈简介

ElasticSearch简介 Elaticsearch&#xff0c;简称为es&#xff0c; es是一个基于apache开源的高扩展的分布式全文检索引擎&#xff0c;它可以近乎实时的存储、检索数据&#xff1b;本身扩展性很好&#xff0c;可以扩展到上百台服务器&#xff0c;处理PB级别的数据。es也使用Ja…