【计算机视觉】YOLOv8的测试以及训练过程(含源代码)

文章目录

  • 一、导读
  • 二、部署环境
  • 三、预测结果
    • 3.1 使用检测模型
    • 3.2 使用分割模型
    • 3.3 使用分类模型
    • 3.4 使用pose检测模型
  • 四、COCO val 数据集
    • 4.1 在 COCO128 val 上验证 YOLOv8n
    • 4.2 在COCO128上训练YOLOv8n
  • 五、自己训练
    • 5.1 训练检测模型
    • 5.2 训练分割模型
    • 5.3 训练分类模型
    • 5.4 训练pose模型

一、导读

YOLOv8是来自Ultralytics的最新的基于YOLO的对象检测模型系列,提供最先进的性能。

利用以前的 YOLO 版本,YOLOv8模型更快、更准确,同时为训练模型提供统一框架,以执行:

  • 物体检测
  • 实例分割
  • 图像分类

Ultralytics为YOLO模型发布了一个全新的存储库。它被构建为 用于训练对象检测、实例分割和图像分类模型的统一框架。

以下是有关新版本的一些主要功能:

  • 用户友好的 API(命令行 + Python)。
  • 更快更准确。
  • 支持:物体检测、实例分割和图像分类
  • 可扩展到所有以前的版本。
  • 新骨干网络。
  • 新的无锚头。
  • 新的损失函数。

YOLOv8 还高效灵活地支持多种导出格式,并且该模型可以在 CPU 和 GPU 上运行。

YOLOv8 模型的每个类别中有五个模型用于检测、分割和分类。YOLOv8 Nano 是最快和最小的,而 YOLOv8 Extra Large (YOLOv8x) 是其中最准确但最慢的。

在这里插入图片描述

YOLOv8 捆绑了以下预训练模型:

  • 在图像分辨率为 640 的 COCO 检测数据集上训练的对象检测检查点。
  • 在图像分辨率为 640 的 COCO 分割数据集上训练的实例分割检查点。
  • 在图像分辨率为 224 的 ImageNet 数据集上预训练的图像分类模型。

二、部署环境

要充分发挥YOLOv8的潜力,需要从存储库和ultralytics包中安装要求。要安装要求,我们首先需要克隆存储库。

git clone https://github.com/ultralytics/ultralytics.git
pip install -r requirements.txt

在最新版本中,Ultralytics YOLOv8提供了完整的命令行界面 (CLI) API 和 Python SDK,用于执行训练、验证和推理。要使用yoloCLI,我们需要安装ultralytics包。

pip install ultralytics

我们的环境部署为:

%pip install ultralytics
import ultralytics
ultralytics.checks()

在这里插入图片描述

三、预测结果

YOLOv8 可以直接在命令行界面 (CLI) 中使用“yolo”命令来执行各种任务和模式,并接受其他参数,即“imgsz=640”。 查看可用 yolo 参数 的完整列表以及 YOLOv8 预测文档 中的其他详细信息 /train/)。

3.1 使用检测模型

!yolo predict model = yolov8n.pt source = '/kaggle/input/personpng/1.jpg'

在这里插入图片描述

import matplotlib.pyplot as plt
from PIL import Image

image = Image.open('/kaggle/working/runs/detect/predict/1.jpg')
plt.figure(figsize=(12, 8))
plt.imshow(image)
plt.axis('off')
plt.show()

结果展示为:

在这里插入图片描述

3.2 使用分割模型

!yolo task = segment mode = predict model = yolov8x-seg.pt source = '/kaggle/input/personpng/1.jpg'

在这里插入图片描述

image = Image.open('/kaggle/working/runs/segment/predict/1.jpg')
plt.figure(figsize=(12, 8))
plt.imshow(image)
plt.axis('off')
plt.show()

在这里插入图片描述

3.3 使用分类模型

!yolo task = classify mode = predict model = yolov8x-cls.pt source = '/kaggle/input/personpng/1.jpg'

在这里插入图片描述

image = Image.open('/kaggle/working/runs/classify/predict/1.jpg')
plt.figure(figsize=(20, 10))
plt.imshow(image)
plt.axis('off')
plt.show()

在这里插入图片描述

3.4 使用pose检测模型

!yolo task = pose mode = predict model = yolov8n-pose.pt source = '/kaggle/input/personpng/1.jpg'

在这里插入图片描述

image = Image.open('/kaggle/working/runs/pose/predict/1.jpg')
plt.figure(figsize=(12, 8))
plt.imshow(image)
plt.axis('off')
plt.show()

在这里插入图片描述

四、COCO val 数据集

文件的大小为780M,共计5000张图像。

import torch
torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')
!unzip -q tmp.zip -d datasets && rm tmp.zip

在这里插入图片描述

4.1 在 COCO128 val 上验证 YOLOv8n

!yolo val model = yolov8n.pt data = coco128.yaml

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import os

folder_path = '/kaggle/working/runs/detect/val'
image_extensions = ['.jpg', '.jpeg', '.png']  # 支持的图片文件扩展名
image_paths = []
for file in os.listdir(folder_path):
    if any(file.endswith(extension) for extension in image_extensions):
        image_paths.append(os.path.join(folder_path, file))
for image_path in image_paths:
    image = plt.imread(image_path)
    plt.figure(figsize=(12, 8))
    plt.imshow(image)
    plt.axis('off')
    plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.2 在COCO128上训练YOLOv8n

!yolo train model = yolov8n.pt data = coco128.yaml epochs = 10 imgsz = 640

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

五、自己训练

5.1 训练检测模型

# 导入YOLOv8n, 在COCO128上训练10个epochs,最后用一张图片预测
from ultralytics import YOLO

model = YOLO('yolov8n.pt')
model.train(data = 'coco128.yaml', epochs = 10)
model('https://ultralytics.com/images/bus.jpg')

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

输出结果:

[ultralytics.yolo.engine.results.Results object with attributes:
 
 boxes: ultralytics.yolo.engine.results.Boxes object
 keypoints: None
 keys: ['boxes']
 masks: None
 names: {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}

 orig_img: array([[[122, 148, 172],
         [120, 146, 170],
         [125, 153, 177],
         ...,
         [157, 170, 184],
         [158, 171, 185],
         [158, 171, 185]],
 
        [[127, 153, 177],
         [124, 150, 174],
         [127, 155, 179],
         ...,
         [158, 171, 185],
         [159, 172, 186],
         [159, 172, 186]],
 
        [[128, 154, 178],
         [126, 152, 176],
         [126, 154, 178],
         ...,
         [158, 171, 185],
         [158, 171, 185],
         [158, 171, 185]],
 
        ...,
 
         [[185, 185, 191],
         [182, 182, 188],
         [179, 179, 185],
         ...,
         [114, 107, 112],
         [115, 105, 111],
         [116, 106, 112]],
 
        [[157, 157, 163],
         [180, 180, 186],
         [185, 186, 190],
         ...,
         [107,  97, 103],
         [102,  92,  98],
         [108,  98, 104]],
 
        [[112, 112, 118],
         [160, 160, 166],
         [169, 170, 174],
         ...,
         [ 99,  89,  95],
         [ 96,  86,  92],
         [102,  92,  98]]], dtype=uint8)
 orig_shape: (1080, 810)
 path: '/kaggle/working/bus.jpg'
 probs: None
 save_dir: None
 speed: {'preprocess': 2.184629440307617, 'inference': 7.320880889892578, 'postprocess': 1.7354488372802734}]

我们测试的原图为:

image = Image.open('/kaggle/working/bus.jpg')
plt.figure(figsize=(12, 8))
plt.imshow(image)
plt.axis('off')
plt.show()

在这里插入图片描述

!yolo predict model = '/kaggle/working/runs/detect/train2/weights/best.pt' source = '/kaggle/working/bus.jpg'

在这里插入图片描述

image = Image.open('/kaggle/working/runs/detect/predict2/bus.jpg')
plt.figure(figsize=(12, 8))
plt.imshow(image)
plt.axis('off')
plt.show()

在这里插入图片描述

!yolo predict model = '/kaggle/working/runs/detect/train2/weights/best.pt' source = '/kaggle/input/personpng/1.jpg'

在这里插入图片描述

image = Image.open('/kaggle/working/runs/detect/predict3/1.jpg')
plt.figure(figsize=(12, 8))
plt.imshow(image)
plt.axis('off')
plt.show()

在这里插入图片描述

5.2 训练分割模型

model = YOLO('yolov8n-seg.pt')
model.train(data='coco128-seg.yaml', epochs = 10)
model('https://ultralytics.com/images/bus.jpg')

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

[ultralytics.yolo.engine.results.Results object with attributes:
 
 boxes: ultralytics.yolo.engine.results.Boxes object
 keypoints: None
 keys: ['boxes', 'masks']
 masks: ultralytics.yolo.engine.results.Masks object
 names: {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
  orig_img: array([[[122, 148, 172],
         [120, 146, 170],
         [125, 153, 177],
         ...,
         [157, 170, 184],
         [158, 171, 185],
         [158, 171, 185]],
 
        [[127, 153, 177],
         [124, 150, 174],
         [127, 155, 179],
         ...,
         [158, 171, 185],
         [159, 172, 186],
         [159, 172, 186]],
 
        [[128, 154, 178],
         [126, 152, 176],
         [126, 154, 178],
         ...,
         [158, 171, 185],
         [158, 171, 185],
         [158, 171, 185]],
 
        ...,
                [[185, 185, 191],
         [182, 182, 188],
         [179, 179, 185],
         ...,
         [114, 107, 112],
         [115, 105, 111],
         [116, 106, 112]],
 
        [[157, 157, 163],
         [180, 180, 186],
         [185, 186, 190],
         ...,
         [107,  97, 103],
         [102,  92,  98],
         [108,  98, 104]],
 
        [[112, 112, 118],
         [160, 160, 166],
         [169, 170, 174],
         ...,
         [ 99,  89,  95],
         [ 96,  86,  92],
         [102,  92,  98]]], dtype=uint8)

 orig_shape: (1080, 810)
 path: '/kaggle/working/bus.jpg'
 probs: None
 save_dir: None
 speed: {'preprocess': 2.610445022583008, 'inference': 23.540735244750977, 'postprocess': 2.538442611694336}]
!yolo predict model = '/kaggle/working/runs/segment/train/weights/best.pt' source = '/kaggle/working/bus.jpg'

在这里插入图片描述

image = Image.open('/kaggle/working/runs/segment/predict2/bus.jpg')
plt.figure(figsize=(12, 8))
plt.imshow(image)
plt.axis('off')
plt.show()

在这里插入图片描述

5.3 训练分类模型

model = YOLO('yolov8n-cls.pt')
model.train(data='mnist160', epochs = 10)
model('https://ultralytics.com/images/bus.jpg')

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

[ultralytics.yolo.engine.results.Results object with attributes:
 
 boxes: None
 keypoints: None
 keys: ['probs']
 masks: None
 names: {0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9'}
 orig_img: array([[[122, 148, 172],
         [120, 146, 170],
         [125, 153, 177],
         ...,
         [157, 170, 184],
         [158, 171, 185],
         [158, 171, 185]],
 
        [[127, 153, 177],
         [124, 150, 174],
         [127, 155, 179],
         ...,
         [158, 171, 185],
         [159, 172, 186],
         [159, 172, 186]],
 
        [[128, 154, 178],
         [126, 152, 176],
         [126, 154, 178],
         ...,
         [158, 171, 185],
         [158, 171, 185],
         [158, 171, 185]],
          
        ...,
 
        [[185, 185, 191],
         [182, 182, 188],
         [179, 179, 185],
         ...,
         [114, 107, 112],
         [115, 105, 111],
         [116, 106, 112]],
 
        [[157, 157, 163],
         [180, 180, 186],
         [185, 186, 190],
         ...,
         [107,  97, 103],
         [102,  92,  98],
         [108,  98, 104]],
 
        [[112, 112, 118],
         [160, 160, 166],
         [169, 170, 174],
         ...,
                  [ 99,  89,  95],
         [ 96,  86,  92],
         [102,  92,  98]]], dtype=uint8)
 orig_shape: (1080, 810)
 path: '/kaggle/working/bus.jpg'
 probs: ultralytics.yolo.engine.results.Probs object
 save_dir: None
 speed: {'preprocess': 1.3382434844970703, 'inference': 2.797365188598633, 'postprocess': 0.07772445678710938}]
!yolo predict model = '/kaggle/working/runs/classify/train/weights/best.pt' source = '/kaggle/working/bus.jpg'

在这里插入图片描述

image = Image.open('/kaggle/working/runs/classify/predict2/bus.jpg')
plt.figure(figsize=(12, 8))
plt.imshow(image)
plt.axis('off')
plt.show()

在这里插入图片描述

5.4 训练pose模型

model = YOLO('yolov8n-pose.pt')
model.train(data='coco8-pose.yaml', epochs = 10)
model('https://ultralytics.com/images/bus.jpg')

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

[ultralytics.yolo.engine.results.Results object with attributes:
 
 boxes: ultralytics.yolo.engine.results.Boxes object
 keypoints: ultralytics.yolo.engine.results.Keypoints object
 keys: ['boxes', 'keypoints']
 masks: None
 names: {0: 'person'}
 orig_img: array([[[122, 148, 172],
         [120, 146, 170],
         [125, 153, 177],
         ...,
         [157, 170, 184],
         [158, 171, 185],
         [158, 171, 185]],
 
        [[127, 153, 177],
         [124, 150, 174],
         [127, 155, 179],
         ...,
         [158, 171, 185],
         [159, 172, 186],
         [159, 172, 186]],
 
        [[128, 154, 178],
         [126, 152, 176],
         [126, 154, 178],
         ...,
         [158, 171, 185],
         [158, 171, 185],
         [158, 171, 185]],
          
        ...,
 
        [[185, 185, 191],
         [182, 182, 188],
         [179, 179, 185],
         ...,
         [114, 107, 112],
         [115, 105, 111],
         [116, 106, 112]],
 
        [[157, 157, 163],
         [180, 180, 186],
         [185, 186, 190],
         ...,
         [107,  97, 103],
         [102,  92,  98],
         [108,  98, 104]],
 
        [[112, 112, 118],
         [160, 160, 166],
         [169, 170, 174],
         ...,
         [ 99,  89,  95],
         [ 96,  86,  92],
         [102,  92,  98]]], dtype=uint8)
          orig_shape: (1080, 810)
 path: '/kaggle/working/bus.jpg'
 probs: None
 save_dir: None
 speed: {'preprocess': 2.290487289428711, 'inference': 22.292375564575195, 'postprocess': 1.9459724426269531}]
!yolo predict model = '/kaggle/working/runs/pose/train/weights/best.pt' source = '/kaggle/working/bus.jpg'

在这里插入图片描述

image = Image.open('/kaggle/working/runs/pose/predict2/bus.jpg')
plt.figure(figsize=(12, 8))
plt.imshow(image)
plt.axis('off')
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/35824.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

华为OD机试真题 Java 实现【快递投放问题】【2023 B卷 100分】,附详细解题思路

目录 一、题目描述二、输入描述三、输出描述四、Java算法源码五、效果展示1、输入2、输出 一、题目描述 有N个快递站点用字符串标识,某些站点之间有道路连接。每个站点有一些包裹要运输,每个站点间的包裹不重复,路上有检查站会导致部分货物无…

博客质量分计算——发布 version 5

目录 1. 背景2. 质量分 version 52.1 version 4 存在问题分析2.2 version 5 改进2.3 消融分析2.3.1 正向积极得分消融实验2.3.2 正向累积得分单变量实验2.3.3 非高分文章消融实验 2.4 V4 和 V5 版本质量分分布对比 3. 总结4. 参考 1. 背景 博客质量分顾名思义是用于衡量一篇博…

MyBatis查询数据库(1)

前言🍭 ❤️❤️❤️SSM专栏更新中,各位大佬觉得写得不错,支持一下,感谢了!❤️❤️❤️ Spring Spring MVC MyBatis_冷兮雪的博客-CSDN博客 经过前⾯的学习咱们 Spring 系列的基本操作已经实现的差不多了&#xff0…

企业为什么要做自动化测试?如何成功实施自动化测试?

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 企业为什么需要自…

掌握Python文件操作的绝招:打造数据之径,揭开文件操作的神秘面纱

文章目录 前言文件的基本操作打开文件操作关闭文件操作对文件进行操作1)只读文件操作read()readlines()readline()seek() 2)只写文件操作3)文件追加操作读写、追加读写操作1. r 模式打开文件2. w 模式打开文件3. a 模式打开文件 以二进制的形…

UDP客户端和服务器

UDP客户端,也就是首先主动发送数据的一方,也就是发起服务请求的一方。 UDP服务器,也就是首先等待接收数据,并对接收的数据进行处理,返回计算结果的一方,也就是提供服务的一方。 在下面实验中使用到的函数 …

Linux进度条

Linux进度条 一.基本概念1.回车和换行2.缓冲区2.实现倒计时 二.进度条 一.基本概念 1.回车和换行 回车:指光标移到该行的起始位置(\r)。 换行:换到下一行(\n)。 在c语音里\n将回车和换行相结合了。 2.缓冲…

存在CSRF漏洞的CMS练习

前言 作者简介:不知名白帽,网络安全学习者。 博客主页:不知名白帽的博客_CSDN博客-网络安全,CTF,内网渗透领域博主 网络安全交流社区:https://bbs.csdn.net/forums/angluoanquan CMS 链接:https://pan.baidu.com/s/13F…

Windows操作系统安全加固

Windows操作系统安全加固 一、安全加固基本思路1.1、安全基线1.2、系统信息审查 二、Windows安全配置加固2.1、漏洞修复——补丁安装2.2、漏洞修复——端口封禁2.2.1、windows高危端口加固实践——封禁135端口对外开放 2.3、安全配置加固——账号口令 一、安全加固基本思路 1.…

LinuxI2C应用编程——访问EEPROM

文章目录 介绍读芯片手册代码编译运行 阅读博文:LinuxI2C应用编程——I2C-Tools的使用 介绍 EEPROM (Electrically Erasable Programmable read only memory),指带电可擦可编程只读存储器。是一种掉电后数据不丢失的存储芯片。 读芯片手册 首先按如图…

cmake操作目录

目录 cmake如何使用子目录 demo cmake生成build目录结构 如果指定子目录编译文件名字(binaryDir) 如果指定子目录编译的路径(binaryDir) 子目录相关的作用域 demo 子目录中定义project cmake如何使用子目录 如果项目比较小的话,我们将所有源码文件放到一个目录里面是没…

java环境搭建2-idea安装激活

windows环境装Java开发环境与idea安装激活 安装jdk安装idea激活idea新建项目开启Java学习 java环境搭建2-idea安装激活 之前安装了wslLinux子环境的Java开发环境,但是再许多地方没有人使用vscode进行Java开发,因为环境配置很麻烦,还有各种插件. windows环境装Java开发环境与ide…

django-vue-admin curd_demo 快速crud教程

django-vue-admin curd_demo 快速crud教程 快速CRUD开发教程:https://bbs.django-vue-admin.com/article/9.html 如何在 env.py 文件配置Mysql数据库:https://bbs.django-vue-admin.com/question/4.html 导入导出配置教程:https://bbs.djang…

机器学习总览

机器学习 1.什么是机器学习? 机器学习是使计算机像人类一样学习与行动的科学,并通过观察与现实世界交互的形式向计算机提供数据和信息,从而随着时间的推移以自主的方式改善其学习。 通过经验提高某些任务性能的计算机程序。 人工智能>机器…

人工智能与Chat GPT

一本书全面掌握ChatGPT,既有向ChatGPT提问的技巧, 也有构建自己的ChatGPT模型的方法,涵盖开发背景、关联技术、使用方法、应用形式、实用案例等 人工智能是我们这个时代最热门的话题,人们既希望它能代替我们做一些工作&#xff0c…

tecplot360 只显示指定phase的设定体积分数的区域

tecplot360 只显示指定phase的设定体积分数的区域 到数入据抽取切面设定显示体积分数范围 参考1: Tecplot中如何提取水线面(自由表面)并绘图 参考2: 两相流计算中,如何用Tecplot提取水相断面平均物理量? …

HTTP 协议的基本格式

目录 1.基本格式 首行 请求报头 关于cookie 关于Referer 响应的报文 首行 关于状态码 1.基本格式 让我们来看看fiddler抓包的下的实际报文情况 首行 在http1.1中,有如下方法 POST、GET、HEAD、PUT、OPTIONS、DELETE、TRACE、CONNECT 在我们抓包遇到的环境中&…

【花雕】全国青少年机器人技术一级考试备考实操搭建手册8

随着科技的不断进步,机器人技术已经成为了一个重要的领域。在这个领域中,机械结构是机器人设计中至关重要的一部分,它决定了机器人的形态、运动方式和工作效率。对于青少年机器人爱好者来说,了解机械结构的基础知识,掌…

Stable Diffusion WebUI Ubuntu 22.04 LTS RTX2060 6G 极限显存出图

模型 默认选中 chilloutmix_Ni.safetensors&#xff0c;重启webui.sh进程 正向词 best quality, ultra high res, (photorealistic:1.4), 1girl, <lora:koreanDollLikeness_v15:1> ,<lora:yaeMikoRealistic_yaemikoMixed:1>, 反向词 paintings, sketches, (…

基于simulink使用光流法跟踪汽车(附源码)

一、前言 此示例演示如何使用光流估计在视频序列中检测和跟踪汽车。 二、模型 下图显示了使用光流跟踪汽车模型&#xff1a; 三、用光流结果跟踪汽车 该模型使用光流估计技术来估计视频序列的每一帧中的运动矢量。通过阈值化运动矢量&#xff0c;该模型创建包含移动对象斑点…