Vim实战:使用Vim实现图像分类任务(一)

文章目录

  • 摘要
  • 安装包
    • 安装timm
  • 数据增强Cutout和Mixup
  • EMA
  • 项目结构
  • 编译安装Vim环境
    • 环境
    • 安装过程
      • 安装库文件
  • 计算mean和std
  • 生成数据集

摘要

论文:https://arxiv.org/pdf/2401.09417v1.pdf
翻译:
近年来,随着深度学习的发展,视觉模型在许多任务中取得了显著的成功。然而,随着模型规模和复杂度的增加,计算和内存的消耗也急剧增长。这限制了模型在资源有限的环境中的使用,尤其是在处理高分辨率图像时。为了解决这个问题,一种新的视觉模型架构——Vim(Vision with Mamba)被提出。
Vim是一种基于状态空间模型(SSM)的视觉模型,利用了Mamba这种高效的硬件设计。SSM是一种动态系统模型,用于描述状态随时间的变化。Mamba则是针对SSM的一种硬件优化设计,可以提高计算效率和降低内存消耗。Vim通过将图像序列标记为位置嵌入,并使用双向SSM压缩视觉表示,从而实现了高效的视觉表示学习。
与传统的视觉模型相比,Vim具有更高的计算和内存效率。在ImageNet分类、COCO物体检测和ADE20K语义分割等任务上的实验表明,Vim的性能优于现有的视觉转换器模型,如DeiT。同时,Vim还具有更低的计算和内存消耗。例如,在批量推理时,Vim可以比DeiT快2.8倍,并节省86.8%的GPU内存,这使得它能够有效地处理高分辨率图像。
在这里插入图片描述

Vim作为一种高效的视觉模型,具有计算和内存效率高、处理高分辨率图像能力强等优点。这使得Vim成为下一代视觉基础模型的理想选择。

本文使用Vim模型实现图像分类任务,模型选择最小的vim_tiny_patch16_224_bimambav2_final_pool_mean_abs_pos_embed_rope_also_residual_with_cls_token(这个方法的名字比较长。。。。。),在植物幼苗分类任务ACC达到了93%+。

请添加图片描述

请添加图片描述

通过这篇文章能让你学到:

  1. 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?
  2. 如何实现Vim模型实现训练?
  3. 如何使用pytorch自带混合精度?
  4. 如何使用梯度裁剪防止梯度爆炸?
  5. 如何使用DP多显卡训练?
  6. 如何绘制loss和acc曲线?
  7. 如何生成val的测评报告?
  8. 如何编写测试脚本测试测试集?
  9. 如何使用余弦退火策略调整学习率?
  10. 如何使用AverageMeter类统计ACC和loss等自定义变量?
  11. 如何理解和统计ACC1和ACC5?
  12. 如何使用EMA?

如果基础薄弱,对上面的这些功能难以理解可以看我的专栏:经典主干网络精讲与实战
这个专栏,从零开始时,一步一步的讲解这些,让大家更容易接受。

安装包

安装timm

使用pip就行,命令:

pip install timm

mixup增强和EMA用到了timm

数据增强Cutout和Mixup

为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:

pip install torchtoolbox

Cutout实现,在transforms中。

from torchtoolbox.transform import Cutout
# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    Cutout(),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])

需要导入包:from timm.data.mixup import Mixup,

定义Mixup,和SoftTargetCrossEntropy

  mixup_fn = Mixup(
    mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,
    prob=0.1, switch_prob=0.5, mode='batch',
    label_smoothing=0.1, num_classes=12)
 criterion_train = SoftTargetCrossEntropy()

Mixup 是一种在图像分类任务中常用的数据增强技术,它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。
参数详解:

mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。

cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。

cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。

如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0

prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。

switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。

mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。

correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正

label_smoothing (float):将标签平滑应用于混合目标张量。

num_classes (int): 目标的类数。

EMA

EMA(Exponential Moving Average)是指数移动平均值。在深度学习中的做法是保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。具体实现如下:


import logging
from collections import OrderedDict
from copy import deepcopy
import torch
import torch.nn as nn

_logger = logging.getLogger(__name__)

class ModelEma:
    def __init__(self, model, decay=0.9999, device='', resume=''):
        # make a copy of the model for accumulating moving average of weights
        self.ema = deepcopy(model)
        self.ema.eval()
        self.decay = decay
        self.device = device  # perform ema on different device from model if set
        if device:
            self.ema.to(device=device)
        self.ema_has_module = hasattr(self.ema, 'module')
        if resume:
            self._load_checkpoint(resume)
        for p in self.ema.parameters():
            p.requires_grad_(False)

    def _load_checkpoint(self, checkpoint_path):
        checkpoint = torch.load(checkpoint_path, map_location='cpu')
        assert isinstance(checkpoint, dict)
        if 'state_dict_ema' in checkpoint:
            new_state_dict = OrderedDict()
            for k, v in checkpoint['state_dict_ema'].items():
                # ema model may have been wrapped by DataParallel, and need module prefix
                if self.ema_has_module:
                    name = 'module.' + k if not k.startswith('module') else k
                else:
                    name = k
                new_state_dict[name] = v
            self.ema.load_state_dict(new_state_dict)
            _logger.info("Loaded state_dict_ema")
        else:
            _logger.warning("Failed to find state_dict_ema, starting from loaded model weights")

    def update(self, model):
        # correct a mismatch in state dict keys
        needs_module = hasattr(model, 'module') and not self.ema_has_module
        with torch.no_grad():
            msd = model.state_dict()
            for k, ema_v in self.ema.state_dict().items():
                if needs_module:
                    k = 'module.' + k
                model_v = msd[k].detach()
                if self.device:
                    model_v = model_v.to(device=self.device)
                ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v)

加入到模型中。

#初始化
if use_ema:
     model_ema = ModelEma(
            model_ft,
            decay=model_ema_decay,
            device='cpu',
            resume=resume)

# 训练过程中,更新完参数后,同步update shadow weights
def train():
    optimizer.step()
    if model_ema is not None:
        model_ema.update(model)


# 将model_ema传入验证函数中
val(model_ema.ema, DEVICE, test_loader)

针对没有预训练的模型,容易出现EMA不上分的情况,这点大家要注意啊!

项目结构

Vim_Demo
├─data1
│  ├─Black-grass
│  ├─Charlock
│  ├─Cleavers
│  ├─Common Chickweed
│  ├─Common wheat
│  ├─Fat Hen
│  ├─Loose Silky-bent
│  ├─Maize
│  ├─Scentless Mayweed
│  ├─Shepherds Purse
│  ├─Small-flowered Cranesbill
│  └─Sugar beet
├─models
│  ├─models_mamba.py
│  └─rope.py
├─vim_tiny_73p1.pth
├─mean_std.py
├─makedata.py
├─train.py
└─test.py

mean_std.py:计算mean和std的值。
makedata.py:生成数据集。
train.py:训练RevCol模型
models:来源官方代码,对面的代码做了一些适应性修改。
vim_tiny_73p1.pth:预训练权重

编译安装Vim环境

环境

系统:ubuntu22.04
CUDA:12.1
python:3.11
显卡驱动:545
在这里插入图片描述

安装过程

系统、CUDA和python的安装过程忽略,这些都能找到。

安装库文件

下载https://github.com/hustvl/Vim源码。
进入vim中,找到vim_requirements.txt文件,如下图:
在这里插入图片描述打开vim_requirements.txt文件,按照要求安装缺失的库文件,如下:

addict==2.4.0
aiohttp==3.9.1
aiosignal==1.3.1
alembic==1.13.0
async-timeout==4.0.3
attrs==23.1.0
blinker==1.7.0
# causal-conv1d @ file:///home/zhulianghui/VisionProjects/mamba/lib/causal_conv1d-1.0.0%2Bcu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl#sha256=79a4bab633ebff031e615d5e8ba396b0dc0c046f4406980ee238fb86a9090038
certifi==2023.11.17
charset-normalizer==3.3.2
click==8.1.7
cloudpickle==3.0.0
contourpy==1.2.0
cycler==0.12.1
databricks-cli==0.18.0
datasets==2.15.0
dill==0.3.7
docker==6.1.3
einops==0.7.0
entrypoints==0.4
filelock==3.13.1
Flask==3.0.0
fonttools==4.46.0
frozenlist==1.4.0
fsspec==2023.10.0
gitdb==4.0.11
GitPython==3.1.40
greenlet==3.0.2
gunicorn==21.2.0
huggingface-hub==0.19.4
idna==3.6
importlib-metadata==7.0.0
itsdangerous==2.1.2
Jinja2==3.1.2
joblib==1.3.2
kiwisolver==1.4.5
Mako==1.3.0
# mamba-ssm @ file:///home/zhulianghui/VisionProjects/mamba/lib/mamba_ssm-1.0.1%2Bcu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl#sha256=71ad1b1eafb05a6e8a41fd82e046fe85511d6378fa3a583e55215b6aa1d65ab9
Markdown==3.5.1
MarkupSafe==2.1.3
matplotlib==3.8.2
mlflow==2.9.1
mmcv==1.3.8
mmsegmentation==0.14.1
mpmath==1.3.0
multidict==6.0.4
multiprocess==0.70.15
networkx==3.2.1
ninja==1.11.1.1
numpy==1.26.2
# nvidia-cublas-cu12==12.1.3.1
# nvidia-cuda-cupti-cu12==12.1.105
# nvidia-cuda-nvrtc-cu12==12.1.105
# nvidia-cuda-runtime-cu12==12.1.105
# nvidia-cudnn-cu12==8.9.2.26
# nvidia-cufft-cu12==11.0.2.54
# nvidia-curand-cu12==10.3.2.106
# nvidia-cusolver-cu12==11.4.5.107
# nvidia-cusparse-cu12==12.1.0.106
# nvidia-nccl-cu12==2.18.1
# nvidia-nvjitlink-cu12==12.3.101
# nvidia-nvtx-cu12==12.1.105
oauthlib==3.2.2
opencv-python==4.8.1.78
packaging==23.2
pandas==2.1.3
Pillow==10.1.0
platformdirs==4.1.0
prettytable==3.9.0
protobuf==4.25.1
pyarrow==14.0.1
pyarrow-hotfix==0.6
PyJWT==2.8.0
pyparsing==3.1.1
python-dateutil==2.8.2
python-hostlist==1.23.0
pytz==2023.3.post1
PyYAML==6.0.1
querystring-parser==1.2.4
regex==2023.10.3
requests==2.31.0
safetensors==0.4.1
scikit-learn==1.3.2
scipy==1.11.4
six==1.16.0
smmap==5.0.1
SQLAlchemy==2.0.23
sqlparse==0.4.4
sympy==1.12
tabulate==0.9.0
threadpoolctl==3.2.0
timm==0.4.12
tokenizers==0.15.0
tomli==2.0.1
# torch==2.1.1+cu118
# torchvision==0.16.1+cu118
tqdm==4.66.1
transformers==4.35.2
triton==2.1.0
typing_extensions==4.8.0
tzdata==2023.3
urllib3==2.1.0
wcwidth==0.2.12
websocket-client==1.7.0
Werkzeug==3.0.1
xxhash==3.4.1
yapf==0.40.2
yarl==1.9.4
zipp==3.17.0

进入causal-conv1d文件夹,如下图:
在这里插入图片描述
执行命令:

pyhton setup.py install

进入mamba文件夹下面,如下图:
在这里插入图片描述
执行命令:

pyhton setup.py install

最终就可以完成编译了!

计算mean和std

为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:

from torchvision.datasets import ImageFolder
import torch
from torchvision import transforms

def get_mean_and_std(train_data):
    train_loader = torch.utils.data.DataLoader(
        train_data, batch_size=1, shuffle=False, num_workers=0,
        pin_memory=True)
    mean = torch.zeros(3)
    std = torch.zeros(3)
    for X, _ in train_loader:
        for d in range(3):
            mean[d] += X[:, d, :, :].mean()
            std[d] += X[:, d, :, :].std()
    mean.div_(len(train_data))
    std.div_(len(train_data))
    return list(mean.numpy()), list(std.numpy())

if __name__ == '__main__':
    train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())
    print(get_mean_and_std(train_dataset))

数据集结构:

image-20220221153058619

运行结果:

([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

把这个结果记录下来,后面要用!

生成数据集

我们整理还的图像分类的数据集结构是这样的

data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet

pytorch和keras默认加载方式是ImageNet数据集格式,格式是

├─data
│  ├─val
│  │   ├─Black-grass
│  │   ├─Charlock
│  │   ├─Cleavers
│  │   ├─Common Chickweed
│  │   ├─Common wheat
│  │   ├─Fat Hen
│  │   ├─Loose Silky-bent
│  │   ├─Maize
│  │   ├─Scentless Mayweed
│  │   ├─Shepherds Purse
│  │   ├─Small-flowered Cranesbill
│  │   └─Sugar beet
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet

新增格式转化脚本makedata.py,插入代码:

import glob
import os
import shutil

image_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):
    print('true')
    #os.rmdir(file_dir)
    shutil.rmtree(file_dir)#删除再建立
    os.makedirs(file_dir)
else:
    os.makedirs(file_dir)

from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(train_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

for file in val_files:
    file_class=file.replace("\\","/").split('/')[-2]
    file_name=file.replace("\\","/").split('/')[-1]
    file_class=os.path.join(val_root,file_class)
    if not os.path.isdir(file_class):
        os.makedirs(file_class)
    shutil.copy(file, file_class + '/' + file_name)

完成上面的内容就可以开启训练和测试了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/357982.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

项目解决方案:高清视频监控联网设计方案

目 录 一、客户需求 二、网络拓扑图 三、方案描述 四、服务器配置 五、方案优势 1. 多级控制 2. 平台可堆叠使用 3. 支持主流接入协议 4. 多种终端显示 5. 视频质量诊断 6. 客户端功能强大 7. 一机一档 一、客户需求 客户现场存在两个网络环境&#xff0c…

25考研北大软微该怎么做?

25考研想准备北大软微,那肯定要认真准备了 考软微需要多少实力 现在的软微已经不是以前的软微了,基本上所有考计算机的同学都知道,已经没有什么信息优势了,只有实打实的有实力的选手才建议报考。 因为软微的专业课也是11408&am…

HarmonyOS4.0系统性深入开发31创建列表(List)

创建列表(List) 概述 列表是一种复杂的容器,当列表项达到一定数量,内容超过屏幕大小时,可以自动提供滚动功能。它适合用于呈现同类数据类型或数据类型集,例如图片和文本。在列表中显示数据集合是许多应用…

[DotNetGuide]C#/.NET/.NET Core优秀项目和框架精选

前言 注意:排名不分先后,都是十分优秀的开源项目和框架,每周定期更新分享(欢迎关注公众号:追逐时光者,第一时间获取每周精选分享资讯🔔)。 帮助开发者发现功能强大、性能优越、创新前…

R语言学习case7:ggplot基础画图(核密度图)

step1: 导入ggplot2库文件 library(ggplot2)step2&#xff1a;带入自带的iris数据集 iris <- datasets::irisstep3&#xff1a;查看数据信息 dim(iris)维度为 [150,5] head(iris)查看数据前6行的信息 step4&#xff1a;画图展示 plot2 <- ggplot(iris,aes(Sepal.W…

基于C#制作一个连连看小游戏

基于C#制作一个连连看小游戏,实现:难易度选择、关卡选择、倒计时进度条、得分计算、音效播放等功能。 目录 引言游戏规则开发环境准备游戏界面设计游戏逻辑实现图片加载与显示鼠标事件处理游戏优化与扩展添加关卡与难度选择说明</

wpf 数据转换(Bytes 转 KB MB GB)

效果 后端 using ProCleanTool.Model; using System; using System.Collections.Generic; using System.Collections.ObjectModel; using System.Globalization; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Data;namespace P…

Python(19)Excel表格操作Ⅰ

目录 导包 读取EXCEL文件 1、获取worksheet名称 2、设定当前工作表 3、输出目标单元格数据 4、工作表.rows&#xff08;行&#xff09; 5、工作表.columns&#xff08;列&#xff09; 小结 导包 要想使用 python 操作 Excel 文件&#xff0c;应当导入 openpyxl 包。在…

【Docker】WSL(Windows Subsystem for Linux)常见命令解释说明以及简单使用

欢迎来到《小5讲堂》&#xff0c;大家好&#xff0c;我是全栈小5。 这是《Docker容器》序列文章&#xff0c;每篇文章将以博主理解的角度展开讲解&#xff0c; 特别是针对知识点的概念进行叙说&#xff0c;大部分文章将会对这些概念进行实际例子验证&#xff0c;以此达到加深对…

Flask 入门2

1. 在上一节中&#xff0c;我们使用到了静态路由&#xff0c;即一个路由规则对应一个 URL。而在实际应用中&#xff0c;更多使用的则是动态路由&#xff0c;它的 URL是可变的。 2. 定义一个很常见的路由地址 app.route(/user/<username>) def user(username):return U…

鸿蒙首批原生应用!无感验证已完美适配鸿蒙系统

顶象无感验证已成功适配鸿蒙系统&#xff0c;成为首批鸿蒙原生应用&#xff0c;助力鸿蒙生态的快速发展。 作为全场景分布式操作系统&#xff0c;鸿蒙系统旨在打破不同设备之间的界限&#xff0c;实现极速发现、极速连接、硬件互助、资源共享。迄今生态设备数已突破8亿台&…

【环境配置】安装了pytorch但是报错torch.cuda.is_availabel()=Flase

解决思路&#xff1a;import torch正常&#xff0c;说明torch包安装正常&#xff0c;但是不能和gpu正常互动&#xff0c;猜测还是pytroch和cuda的配合问题 1.查看torch包所需的cuda版本 我的torch是2.0.1&#xff0c;在现在是比较新的包&#xff0c;需要12以上的cuda支持&…

【flutter项目类型】project type如何区分

通过项目中.metadata内容区分 如 # Used by Flutter tool to assess capabilities and perform upgrades etc. # # This file should be version controlled and should not be manually edited.version:revision: 85684f9300908116a78138ea4c6036c35c9a1236channel: stablep…

vs 撤销本地 commit 并保留更改

没想到特别好的办法&#xff0c;我想的是用 vs 打开 git 命令行工具 然后通过 git 命令来撤销提交&#xff0c;尝试之前建议先建个分支实验&#xff0c;以免丢失代码&#xff0c; git 操作见 git 合并多个 commit / 修改上一次 commit

PaddleNLP的简单使用

1 介绍 PaddleNLP是一个基于PaddlePaddle深度学习平台的自然语言处理&#xff08;NLP&#xff09;工具库。 它提供了一系列用于文本处理、文本分类、情感分析、文本生成等任务的预训练模型、模型组件和工具函数。 PaddleNLP有统一的应用范式&#xff1a;通过 paddlenlp.Task…

单片机学习笔记---静态数码管显示

目录 数码管是什么&#xff1f; 一位数码管的引脚定义 四位一体的数码管引脚定义 数码管的原理图解析 数码管怎么显示数据&#xff1f;&#xff08;总结代码显示&#xff09; 今天开始学习数码管&#xff0c;它比LED和独立按键复杂一点 数码管是什么&#xff1f; LED数码…

交叉编译opencv运行平台rk3588

opencv版本&#xff1a;4.8.0 opencv_contrib版本&#xff1a;4.8.0 在源码目录下建build目录&#xff0c;进入该目录配置编译选项生成makefile cmake 配置参数&#xff1a; cmake -DCMAKE_MAKE_PROGRAM:PATH/usr/bin/make -DCMAKE_INSTALL_PREFIX/home/rog/my_file/other_L…

「工业遥测」图表控件LightningChart在化工精炼领域中的应用

LightningChart.NET完全由GPU加速&#xff0c;并且性能经过优化&#xff0c;可用于实时显示海量数据-超过10亿个数据点。 LightningChart包括广泛的2D&#xff0c;高级3D&#xff0c;Polar&#xff0c;Smith&#xff0c;3D饼/甜甜圈&#xff0c;地理地图和GIS图表以及适用于科学…

再谈启动一个Activity大致时序图

太多了&#xff0c;笔者不想写&#xff0c; 读者可通过PlantUML插件查看如下PUML文件生成的时序图。 补充说明下&#xff0c;Android31版本。 startuml https://plantuml.com/sequence-diagram skinparam dpi 800 scale 15000 width scale 5000 heightautonumber Launcher La…

搭建 prometheus + grafana + springboot3 监控

下载安装包 下载prometheus&#xff1a;https://github.com/prometheus/prometheus/releases/download/v2.42.0/prometheus-2.42.0.windows-amd64.zip 下载grafana&#xff1a; https://dl.grafana.com/enterprise/release/grafana-enterprise-9.4.1.windows-amd64.zip Spr…